

THE RISE OF THE LEPTONS

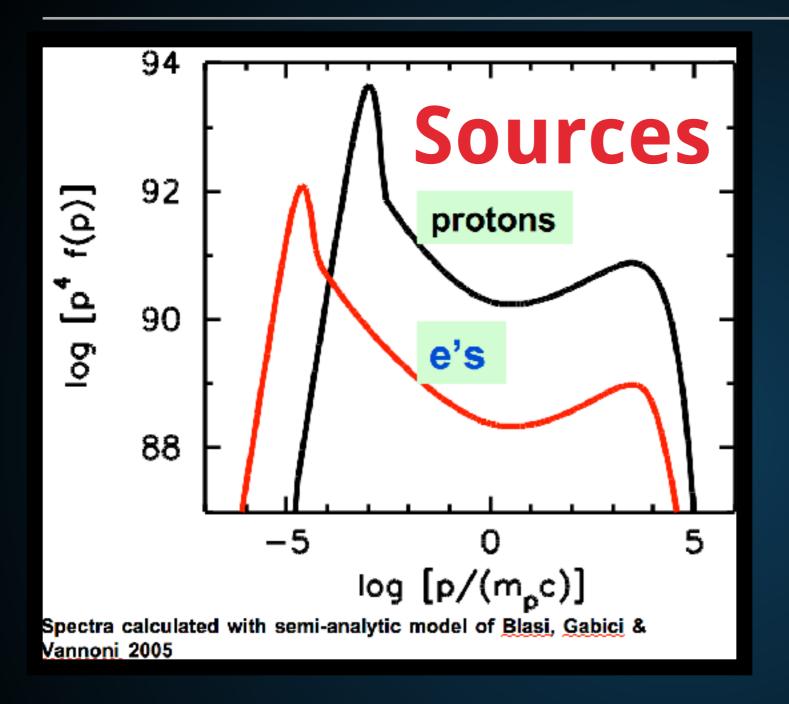
PULSAR EMISSION DOMINATES THE TEV GAMMA-RAY SKY

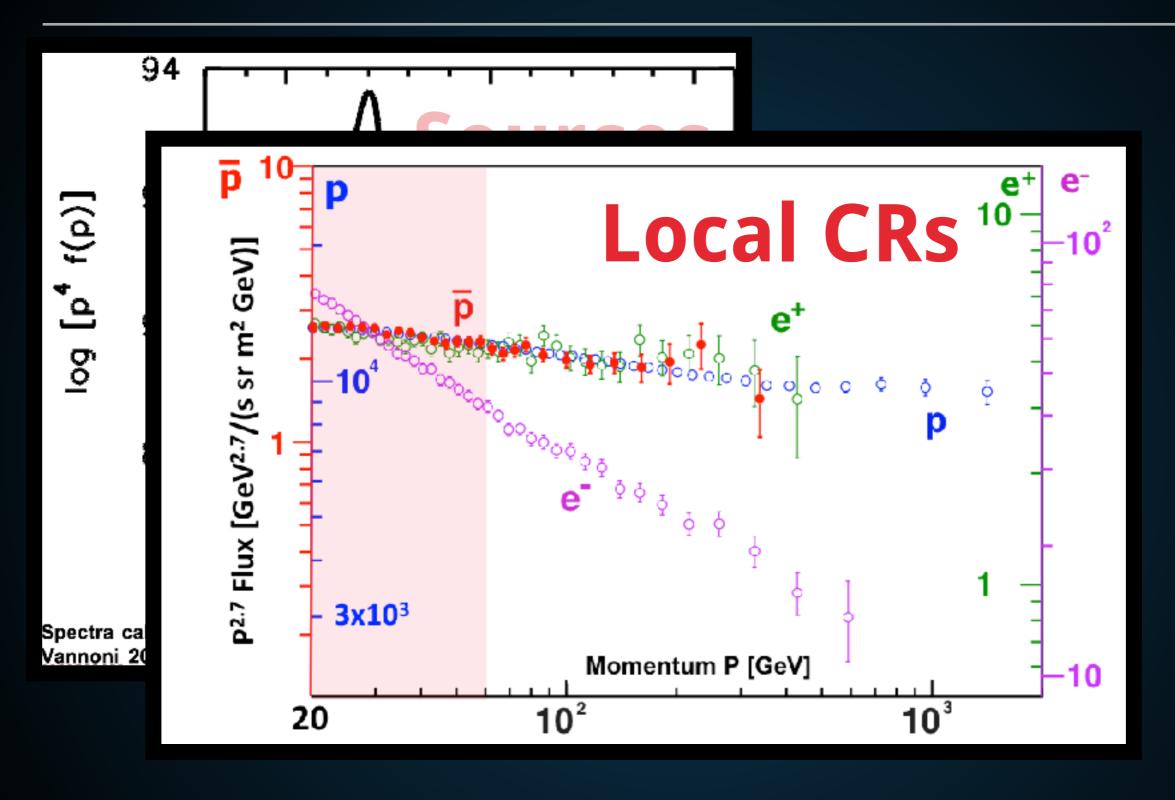
Wisconsin HEP Seminar

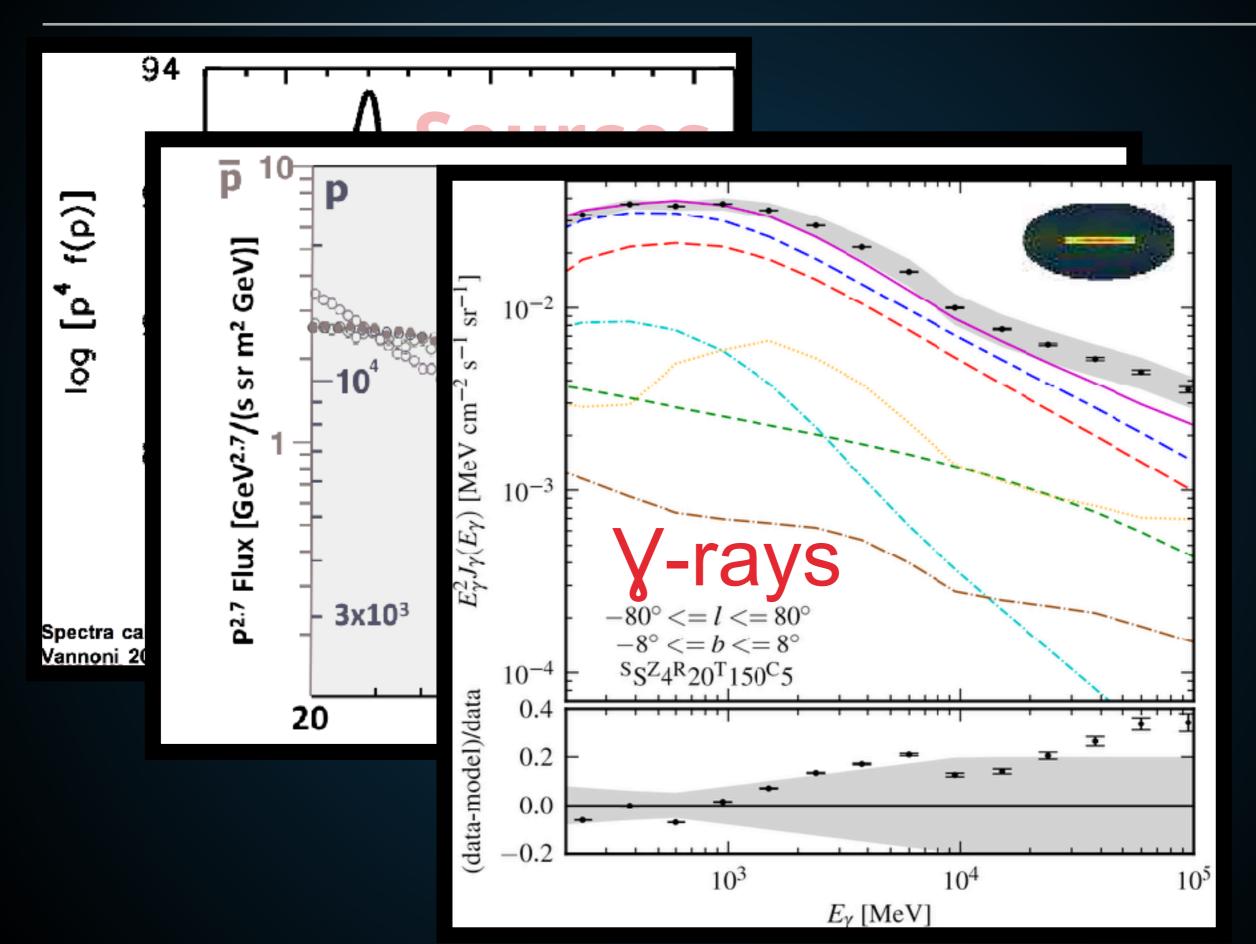
November 28, 2017

THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

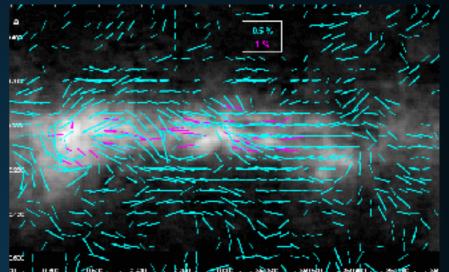

THE RISE OF THE LEPTONS


PULSAR EMISSION DOMINATES THE TEV GAMMA-RAY SKY


WITH: KATIE AUCHETTL, BEN BUCKMAN, JOSEPH BRAMANTE, ILIAS CHOLIS, CARMELO EVOLI, KE FANG, DAN HOOPER, TANVI KARWAL, SHIRLEY LI, GIOVANNI MORLINO

We normally think that the Milky Way cosmic-ray energy budget is dominated by protons.

A UNIVERSE DOMINATED BY PROTONS

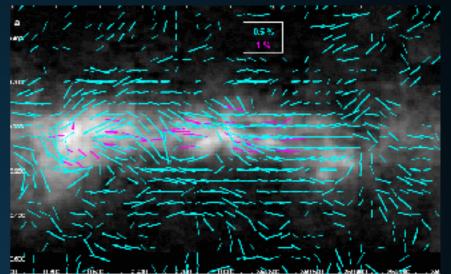

Start with a source of relativistic cosmic-rays

- Supernova Explosions
- Supernova Remnants
- Pulsars
- Shocks/Mergers

Start with a source of relativistic cosmic-rays

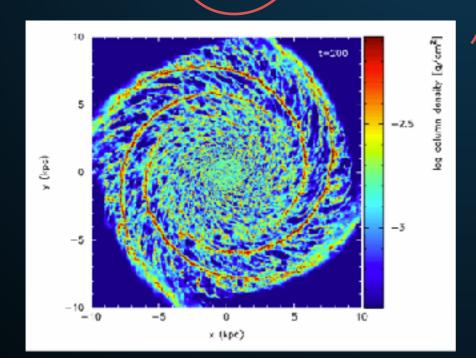
cosmic rays propagate

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \vec{\nabla} \cdot (D_{xx} \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\vec{p} \psi - \frac{p}{3} (\vec{\nabla} \cdot \vec{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$



- If they propagate to Earth, can be detected:
 - MS-02/PAMELA
 - CREAM/HEAT/CAPRICE

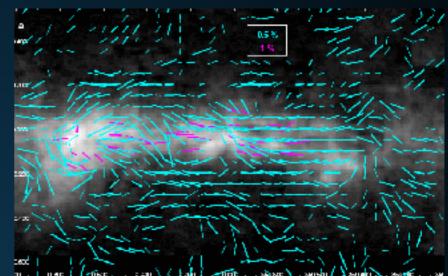
Start with a source of relativistic cosmic-rays


cosmic rays propagate

$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \vec{\nabla} \cdot (D_{xx} \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\vec{\nabla} \cdot \vec{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

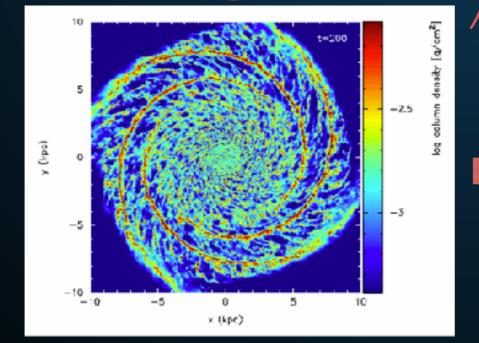
Solved Numerically: e.g. Galprop

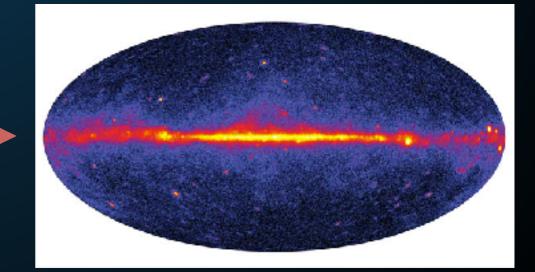
Gas/ISRF



Alternatively can collide with Galactic gas or the interstellar radiation field.

Start with a source of relativistic cosmic-rays


cosmic rays propagate



$$\frac{\partial \psi}{\partial t} = q(\vec{r}, p) + \vec{\nabla} \cdot (D_{xx} \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\vec{\nabla} \cdot \vec{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Solved Numerically: e.g. Galprop

Gas/ISRF

A NEW PICTURE

- In this talk, I will argue that electrons and positrons dominate the Milky Way's energetics at TeV energies:
 - 1.) Pulsars produce the majority of the TeV gammaray emission observed from the Milky Way

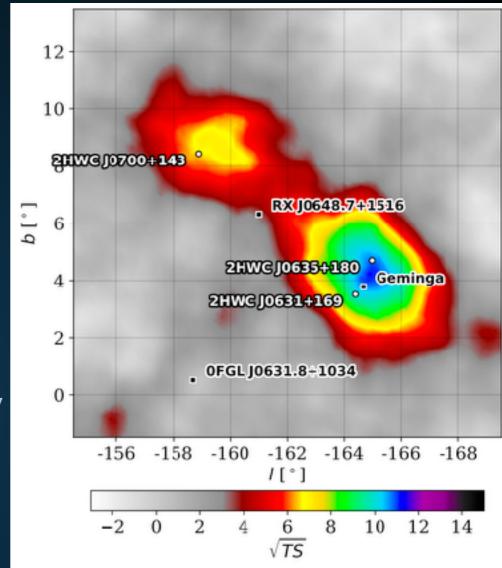
 2.) Pulsars produce the majority of the bright TeV sources observed by CTA/HAWC/HESS etc.

3.) Pulsars are responsible for the rising positron fraction observed by PAMELA/AMS-02

A NEW PICTURE

Always worry about the assumptions behind bold statements:

- Observations necessitate these results.
- Very few (and reasonable) modeling assumptions


Let's start without a theoretical model.

What do TeV observations tell us about pulsars?

HAWC OBSERVATIONS OF GEMINGA AND MONOGEM

Name	Tested radius	Index	$F_7 \times 10^{16}$	TeVCat
	[°]		$[{\rm TeV^{-1}cm^{-2}s^{-1}}]$	
2HWC J0534+220	-	-2.58 ± 0.01	184.7 ± 2.4	Crab
2 HWC J 0631 + 169	-	-2.57 ± 0.15	6.7 ± 1.5	Geminga
"	2.0	-2.23 ± 0.08	48.7 ± 6.9	Geminga
2HWC J0635+180	-	-2.56 ± 0.16	6.5 ± 1.5	Geminga
2HWC J0700+143	1.0	-2.17 ± 0.16	13.8 ± 4.2	-
п	2.0	-2.03 ± 0.14	23.0 ± 7.3	-

- HAWC observes Geminga
 - 4.9 x 10⁻¹⁴ TeV⁻¹ cm⁻² s⁻¹ at 7 TeV
 - Luminosity ~ 1.4 x 10³¹ TeV s⁻¹
 - Big Distance Uncertainties
 - > 300 kyr!

Beautiful!

HAWC OBSERVATIONS OF GEMINGA AND MONOGEM

Name	Tested radius	Index	$F_7 \times 10^{15}$	TeVCat
	[°]		$[\mathrm{TeV}^{-1}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	
2HWC J0700+143	1.0	$\textbf{-2.17}\pm0.16$	13.8 ± 4.2	-
19	2.0	-2.03 ± 0.14	23.0 ± 7.3	-

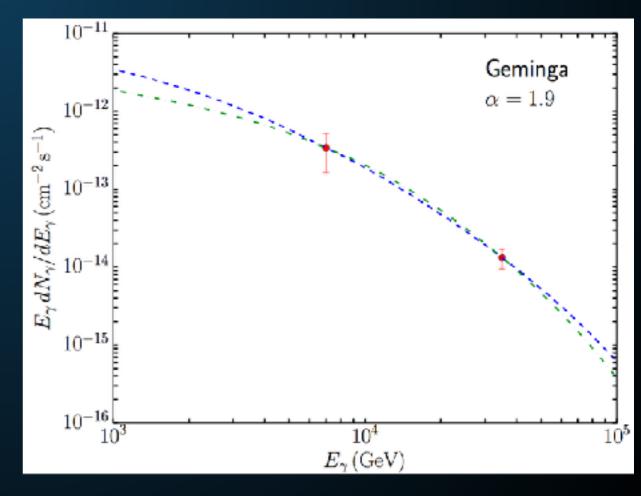
- HAWC observes B0656+14 (Monogem)
 - 2.3 x 10⁻¹⁴ TeV⁻¹ cm⁻² s⁻¹ at 7 TeV
 - Luminosity ~ 1.1 x 10³¹ TeV s⁻¹
 - Small distance uncertainties.
- :-(
 - 110 kyr!

Table 1 HGPS sources considered as firmly identified pulsar wind nebulae in the	this paper.
---	-------------

		-							
HGPS name	ATNF name	Canonical name	$\lg \dot{E}$	$ au_{ m c}$	d	PSR offset	Γ	$R_{ m PWN}$	$L_{1-10\mathrm{TeV}}$
				(kyr)	(kpc)	(pc)		(pc)	$(10^{33}\mathrm{erg}\mathrm{s}^{-1})$
$J1813-178^{[1]}$	J1813 - 1749		37.75	5.60	4.70	< 2	2.07 ± 0.05	4.0 ± 0.3	19.0 ± 1.5
J1833-105	J1833 - 1034	$G21.5-0.9^{[2]}$	37.53	4.85	4.10	< 2	2.42 ± 0.19	< 4	2.6 ± 0.5
J1514-591	B1509-58	MSH $15-52^{[3]}$	37.23	1.56	4.40	< 4	2.26 ± 0.03	11.1 ± 2.0	52.1 ± 1.8
J1930+188	J1930+1852	$G54.1+0.3^{[4]}$	37.08	2.89	7.00	< 10	2.6 ± 0.3	< 9	5.5 ± 1.8
J1420-607	J1420 - 6048	Kookaburra (K2) ^[5]	37.00	13.0	5.61	5.1 ± 1.2	2.20 ± 0.05	7.9 ± 0.6	44 ± 3
J1849-000	J1849 - 0001	$IGR\ J18490-0000^{[6]}$	36.99	42.9	7.00	< 10	1.97 ± 0.09	11.0 ± 1.9	12 ± 2
J1846 - 029	J1846 - 0258	Kes 75 ^[2]	36.91	0.728	5.80	< 2	2.41 ± 0.09	< 3	6.0 ± 0.7
J0835 - 455	B0833 - 45	$Vela X^{[7]}$	36.84	11.3	0.280	2.37 ± 0.18	1.89 ± 0.03	2.9 ± 0.3	$0.83 \pm 0.11^*$
$J1837-069^{[8]}$	J1838 - 0655		36.74	22.7	6.60	17 ± 3	2.54 ± 0.04	41 ± 4	204 ± 8
J1418 - 609	J1418 - 6058	Kookaburra (Rabbit) ^[5]	36.69	10.3	5.00	7.3 ± 1.5	2.26 ± 0.05	9.4 ± 0.9	31 ± 3
J1356-645 ^[9]	J1357 - 6429		36.49	7.31	2.50	5.5 ± 1.4	2.20 ± 0.08	10.1 ± 0.9	14.7 ± 1.4
$J1825 - 137^{[10]}$	B1823 - 13		36.45	21.4	3.93	33 ± 6	2.38 ± 0.03	32 ± 2	116 ± 4
J1119-614	J1119 - 6127	$G292.2 - 0.5^{[11]}$	36.36	1.61	8.40	< 11	2.64 ± 0.12	14 ± 2	23 ± 4
$J1303-631^{[12]}$	J1301 - 6305		36.23	11.0	6.65	20.5 ± 1.8	2.33 ± 0.02	20.6 ± 1.7	96 ± 5

- HESS finds a large population of "TeV PWN"
- HESS systems have a higher spin down power, but are more distant.

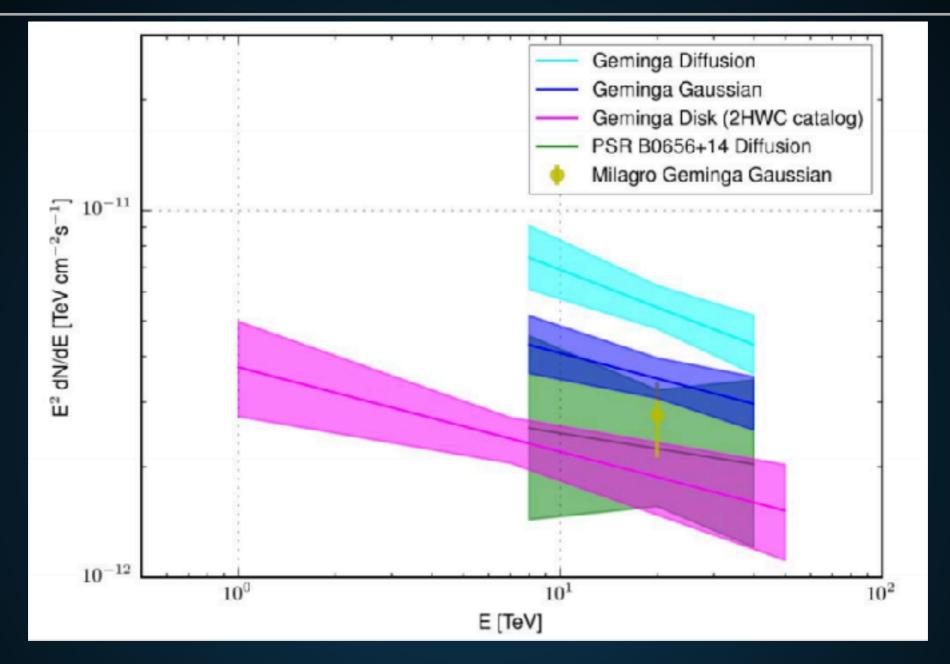
Table 4 Candidate pulsar wind nebulae from the pre-selection.


	1							
HGPS name	ATNF name	$\lg \dot{E}$	$ au_{ m c}$	d	PSR offset	Γ	$R_{ m PWN}$	$L_{1-10\mathrm{TeV}}$
			(kyr)	(kpc)	(pc)		(pc)	$(10^{33}{ m ergs^{-1}})$
J1616-508 (1)	J1617 - 5055	37.20	8.13	6.82	< 26	2.34 ± 0.06	28 ± 4	162 ± 9
J1023 - 575	J1023 - 5746	37.04	4.60	8.00	< 9	2.36 ± 0.05	23.2 ± 1.2	67 ± 5
J1809—193 (1)	J1811 - 1925	36.81	23.3	5.00	29 ± 7	2.38 ± 0.07	35 ± 4	53 ± 3
J1857+026	J1856+0245	36.66	20.6	9.01	21 ± 6	2.57 ± 0.06	41 ± 9	118 ± 13
J1640 - 465	J1640-4631 (1)	36.64	3.35	12.8	< 20	2.55 ± 0.04	25 ± 8	210 ± 12
J1641 - 462	J1640-4631 (2)	36.64	3.35	12.8	50 ± 5	2.50 ± 0.11	< 14	17 ± 4
J1708 - 443	B1706-44	36.53	17.5	2.60	17 ± 3	2.17 ± 0.08	12.7 ± 1.4	6.6 ± 0.9
J1908+063	J1907+0602	36.45	19.5	3.21	21 ± 3	2.26 ± 0.06	27.2 ± 1.5	28 ± 2
J1018-589A	J1016-5857 (1)	36.41	21.0	8.00	47.5 ± 1.6	2.24 ± 0.13	< 4	8.1 ± 1.4
J1018 - 589B	J1016-5857 (2)	36.41	21.0	8.00	25 ± 7	2.20 ± 0.09	21 ± 4	23 ± 5
J1804 - 216	B1800-21	36.34	15.8	4.40	18 ± 5	2.69 ± 0.04	19 ± 3	42.5 ± 2.0
J1809-193(2)	J1809 - 1917	36.26	51.3	3.55	< 17	2.38 ± 0.07	25 ± 3	26.9 ± 1.5
J1616-508(2)	B1610 - 50	36.20	7.42	7.94	60 ± 7	2.34 ± 0.06	32 ± 5	220 ± 12
J1718 - 385	J1718 - 3825	36.11	89.5	3.60	5.4 ± 1.6	1.77 ± 0.06	7.2 ± 0.9	4.6 ± 0.8
J1026 - 582	J1028 - 5819	35.92	90.0	2.33	9 ± 2	1.81 ± 0.10	5.3 ± 1.6	1.7 ± 0.5
J1832 - 085	B1830-08 (1)	35.76	147	4.50	23.3 ± 1.5	2.38 ± 0.14	< 4	1.7 ± 0.4
J1834-087	B1830-08 (2)	35.76	147	4.50	32.3 ± 1.9	2.61 ± 0.07	17 ± 3	25.8 ± 2.0
J1858+020	J1857+0143	35.65	71.0	5.75	38 ± 3	2.39 ± 0.12	7.9 ± 1.6	7.1 ± 1.5
J1745 - 303	B1742-30 (1)	33.93	546	0.200	1.42 ± 0.15	2.57 ± 0.06	0.62 ± 0.07	0.014 ± 0.003
J1746 - 308	B1742-30(2)	33.93	546	0.200	< 1.1	3.3 ± 0.2	0.56 ± 0.12	0.009 ± 0.003

- HESS finds a large population of "TeV PWN"
- HESS systems have a higher spin down power, but are more distant.

Geminga has a hard gamma-ray spectrum

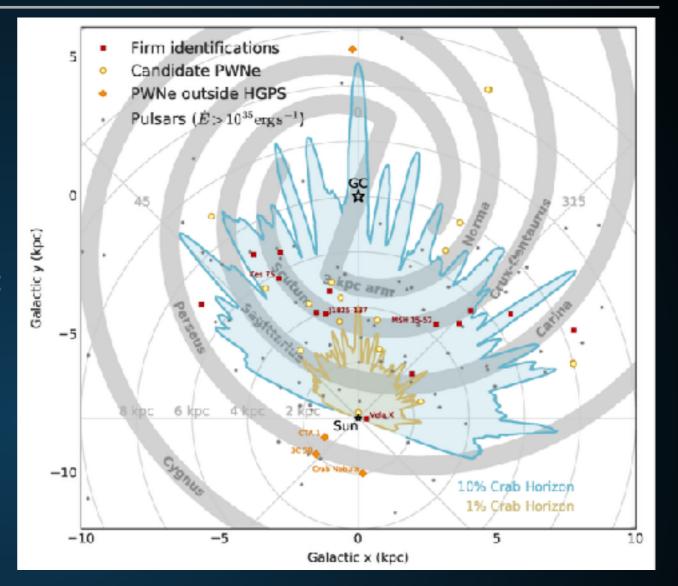
Name	Tested radius	Index	$F_7 imes 10^{15}$	TeVCat
	[°]	[T	$[cV^{-1}cm^{-2}s^{-1}]$	
2HWC J0631+169	-	-2.57 ± 0.15	6.7 ± 1.5	Geminga
31	2.0	-2.23 ± 0.08	48.7 ± 6.9	Geminga
2HWC J0635+180	-	-2.56 ± 0.16	6.5 ± 1.5	Geminga


- We assuming an electron injection spectrum following a power-law with an exponential cutoff.
- Based on a joint fit to the HAWC and Milagro data, we calculate:
 - \rightarrow -1.9 < α < -1.5
 - $E_{cut} \approx 50 \text{ TeV}$

Geminga Electron Power Corresponds to

 $\sim 3-9 \times 10^{33} \text{ erg s}^{-1}!$

9-27% of the total pulsar spin-down power!


Geminga Electron Power Corresponds to

~ 1-2 x 10³⁴ erg s⁻¹!

30-50% of the total pulsar spin-down power!

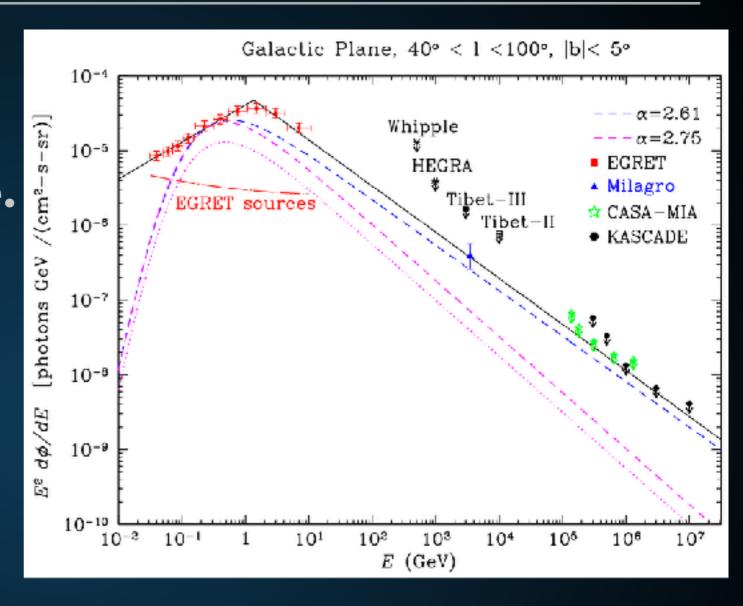
 Assumption: Geminga (and Monogem) are typical pulsars.

- This statement is well supported:
 - Observed because they are the two closest sources.
 - Many similar HESS Sources.

We will call these sources, <u>"TeV halos"</u> - for reasons which will become clear later.

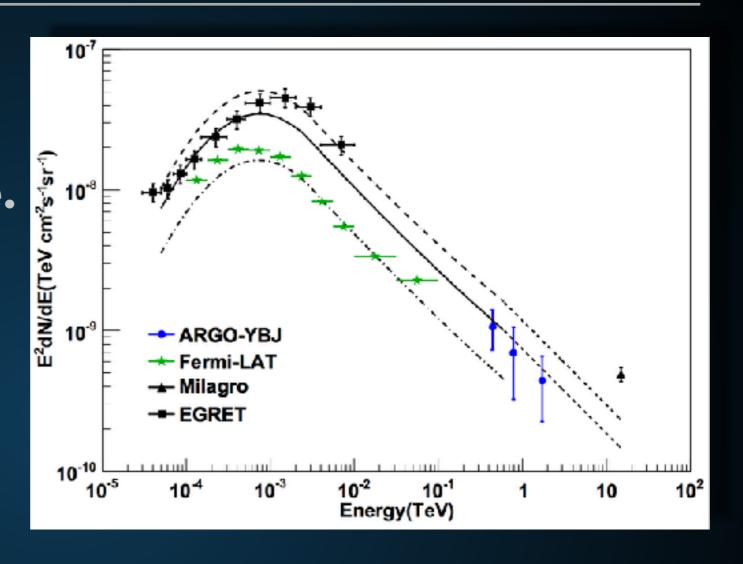
$$\phi_{\rm TeV\;halo} = \left(\frac{\dot{E}_{\rm psr}}{\dot{E}_{\rm Geminga}}\right) \left(\frac{d_{\rm Geminga}^2}{d_{\rm psr}^2}\right) \phi_{\rm Geminga}$$

$$\theta_{\mathrm{TeV\ halo}} = \left(\frac{d_{\mathrm{Geminga}}}{d_{\mathrm{psr}}}\right) \theta_{\mathrm{Geminga}}$$


- Assume that every pulsar converts an equivalent fraction of its spin-down power into the TeV halo flux.
- Can then calculate the TeV flux and extension of every TeV halo based on its spin-down power, and the observations of Geminga.
- Note: Using Monogem would increases fluxes by nearly a factor of 2. The power law of this correlation doesn't greatly affect the results.

Implication I:

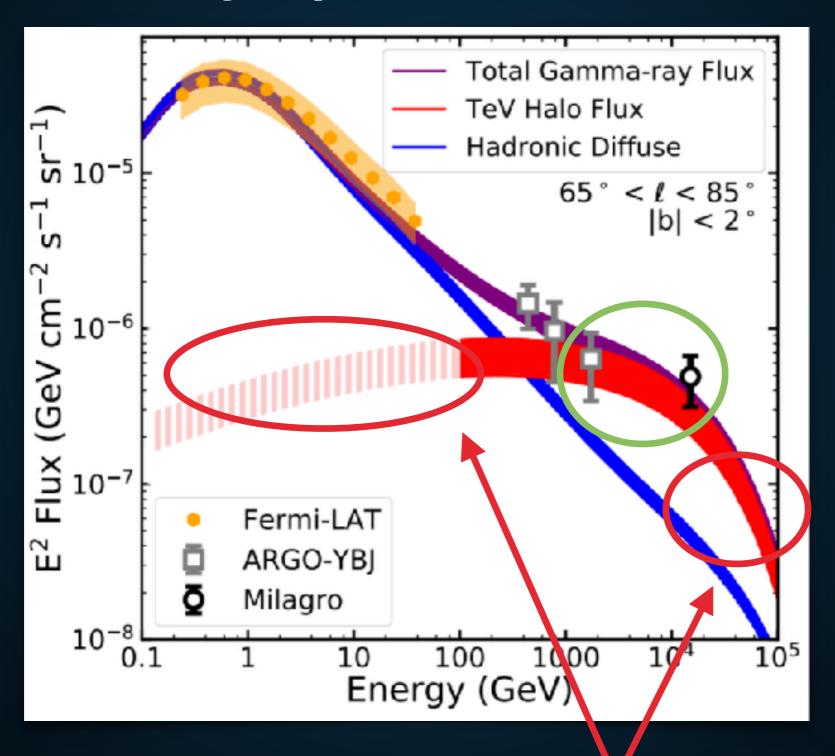
Most diffuse TeV emission is powered by pulsars


Milagro detects bright diffuse TeV emission along the Galactic plane.

Difficult to explain with pion decay, due to steeply falling local hadronic CR spectrum.

Can harden gamma-ray emission to some extent using radially dependent diffusion constants (1504.00227). Milagro detects bright diffuse TeV emission along the Galactic plane.

Difficult to explain with pion decay, due to steeply falling local hadronic CR spectrum.

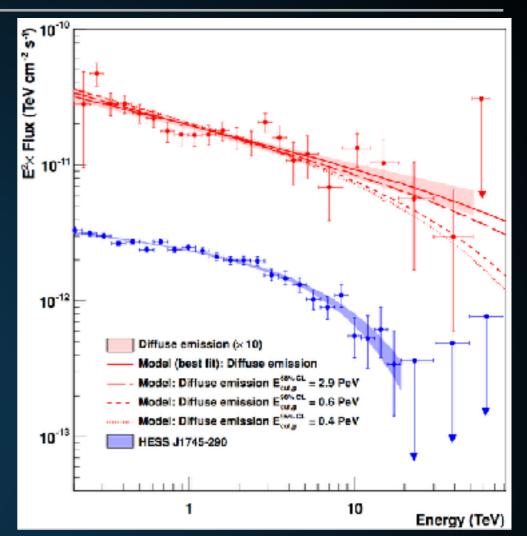


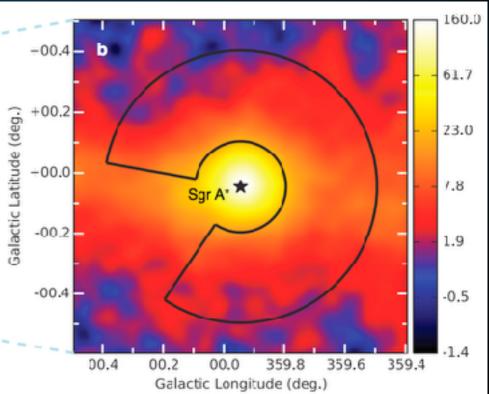
 Can harden gamma-ray emission to some extent using radially dependent diffusion constants (1504.00227). Use a generic model for pulsar luminosities

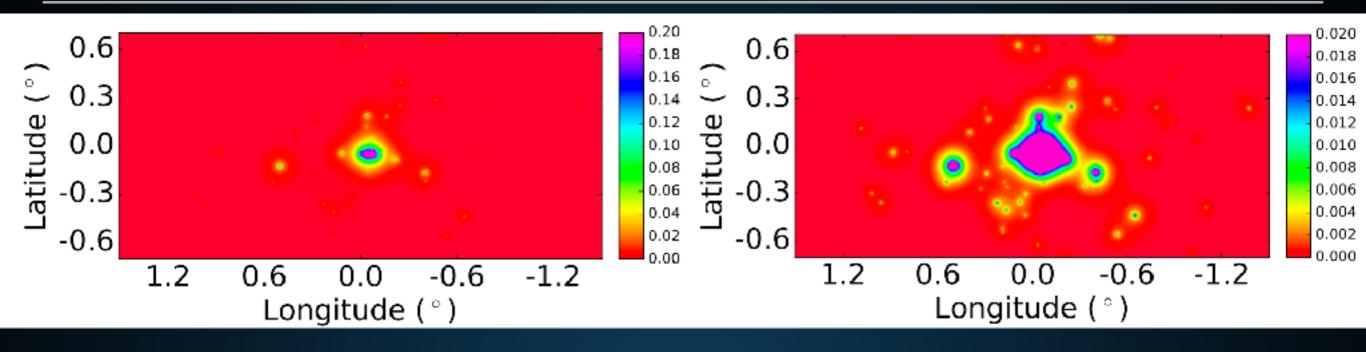
- $B_0 = 10^{12.5} G (+/-10^{0.3} G)$
- $P_0 = 0.3 s (+/- 0.15 s)$
- Spindown Timescale of ~10⁴ yr (depends on B₀)
- Galprop model for supernova distances

PsrPopPy: An open-source package for pulsar population Physics and Astronomy, West Virginia University, Morgantown, The University of Manchester, Manchester of Physics and Astronomy, The University of Manchester, Manchester of Physics and Astronomy, The University of Manchester, Manchester of Rates 1,2, D. R. Loringer Virolinia University, Morgantown, Their versity of Manch simulations

TeV halos naturally explain the TeV excess!

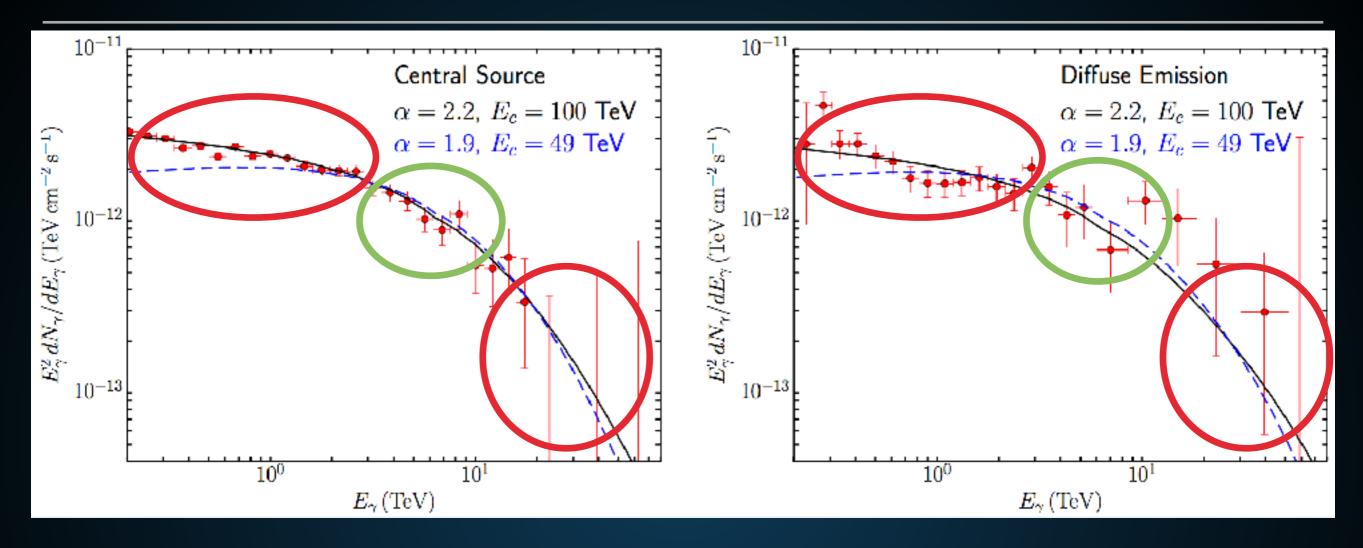



spectral assumption!


 HESS observations indicate diffuse ~50 TeV emission from the Galactic center

If this emission is hadronic, it indicates PeV particle acceleration in the GC

 Spherical symmetry hints at Galactic Center source.



Significant star (pulsar) formation in the Galactic center

 Pulsars formed in the central parsec will be kicked into surrounding medium.

Source of diffuse gamma-rays in the Galactic center.

INTENSITY OF TEV HALO EMISSION IN GALACTIC CENTER

- Assumptions: Standard values for the pulsar birthrate and kick velocity
 - Birth rate between 100-750 pulsars/Myr
 - Pulsar kicks ~ 400 km/s
- We reproduce the intensity and morphology of the HESS emission.

Implication II:

Most TeV gamma-ray sources are TeV halos.

> 5 / 39 sources in the 2HWC catalog are correlated with bright, middle-aged (100 – 400 kyr) pulsars.

ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	(kpc)	Separation	Separation	Flux ($\times 10^{-15}$)	Flux (×10 ⁻¹⁵)	Ratio	Extension	Extension	(kyr)	Overlap
B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1913+1011	4.61	0.34°	27.36 pc	13.0	36.6	0.36	0.11°	0.7°	169	0.30
J2032+4127	1.70	0.11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006
	Name B0656+14 J0633+1746 J1913+1011 J2032+4127	Name (kpc) B0656+14 0.29 J0633+1746 0.25 J1913+1011 4.61 J2032+4127 1.70	Name (kpc) Separation B0656+14 0.29 0.18° J0633+1746 0.25 0.89° J1913+1011 4.61 0.34° J2032+4127 1.70 0.11°	Name (kpc) Separation Separation B0656+14 0.29 0.18° 0.91 pc J0633+1746 0.25 0.89° 3.88 pc J1913+1011 4.61 0.34° 27.36 pc J2032+4127 1.70 0.11° 3.26 pc	Name (kpc) Separation Separation Flux (×10 ⁻¹⁵) B0656+14 0.29 0.18° 0.91 pc 43.0 J0633+1746 0.25 0.89° 3.88 pc 48.7 J1913+1011 4.61 0.34° 27.36 pc 13.0 J2032+4127 1.70 0.11° 3.26 pc 5.59	Name (kpc) Separation Separation Flux (×10 ⁻¹⁵) Flux (×10 ⁻¹⁵) B0656+14 0.29 0.18° 0.91 pc 43.0 23.0 J0633+1746 0.25 0.89° 3.88 pc 48.7 48.7 J1913+1011 4.61 0.34° 27.36 pc 13.0 36.6 J2032+4127 1.70 0.11° 3.26 pc 5.59 61.6	Name (kpc) Separation Separation Flux (×10 ⁻¹⁵) Flux (×10 ⁻¹⁵) Ratio B0656+14 0.29 0.18° 0.91 pc 43.0 23.0 1.87 J0633+1746 0.25 0.89° 3.88 pc 48.7 48.7 1.0 J1913+1011 4.61 0.34° 27.36 pc 13.0 36.6 0.36 J2032+4127 1.70 0.11° 3.26 pc 5.59 61.6 0.091	Name (kpc) Separation Separation Flux (×10 ⁻¹⁵) Flux (×10 ⁻¹⁵) Ratio Extension B0656+14 0.29 0.18° 0.91 pc 43.0 23.0 1.87 2.0° J0633+1746 0.25 0.89° 3.88 pc 48.7 48.7 1.0 2.0° J1913+1011 4.61 0.34° 27.36 pc 13.0 36.6 0.36 0.11° J2032+4127 1.70 0.11° 3.26 pc 5.59 61.6 0.091 0.29°	Name (kpc) Separation Flux (×10 ⁻¹⁵) Flux (×10 ⁻¹⁵) Ratio Extension Extension B0656+14 0.29 0.18° 0.91 pc 43.0 23.0 1.87 2.0° 1.73° J0633+1746 0.25 0.89° 3.88 pc 48.7 48.7 1.0 2.0° 2.0° J1913+1011 4.61 0.34° 27.36 pc 13.0 36.6 0.36 0.11° 0.7° J2032+4127 1.70 0.11° 3.26 pc 5.59 61.6 0.091 0.29° 0.7°	Name (kpc) Separation Flux (×10 ⁻¹⁵) Flux (×10 ⁻¹⁵) Ratio Extension Extension (kyr) B0656+14 0.29 0.18° 0.91 pc 43.0 23.0 1.87 2.0° 1.73° 111 J0633+1746 0.25 0.89° 3.88 pc 48.7 48.7 1.0 2.0° 2.0° 342 J1913+1011 4.61 0.34° 27.36 pc 13.0 36.6 0.36 0.11° 0.7° 169 J2032+4127 1.70 0.11° 3.26 pc 5.59 61.6 0.091 0.29° 0.7° 181

- ▶ 12 others with young pulsars
 - 2.3 chance overlaps
 - TeV emission may be contaminated by SNR

2HWC	ATNF	Distance		Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux ($\times 10^{-15}$)	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	(kyr)	Overlap
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9°	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08

STEP I: TEV HALOS ARE A GENERIC FEATURE OF PULSARS

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s ⁻¹)	Spindown Flux (erg s $^{-1}$ kpc $^{-2}$)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	_
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	_
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	_
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	_
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	_
B0540+23	23.48	1.56	253	4.1e34	1.4e33	_

- Can produce a ranked list of the 57 ATNF pulsars in the HAWC field of view these are the brightest 11.
- 10 year HAWC observations should detect:
 - TeV halos from a dozen middle-aged ATNF pulsars.
 - ► TeV halos from ~40 additional young pulsars.

STEP I: TEV HALOS ARE A GENERIC FEATURE OF PULSARS

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s ⁻¹)	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	_
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	_
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	_
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	_
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	_
B0540+23	23.48	1.56	253	4.1e34	1.4e33	2HWC J0543+233

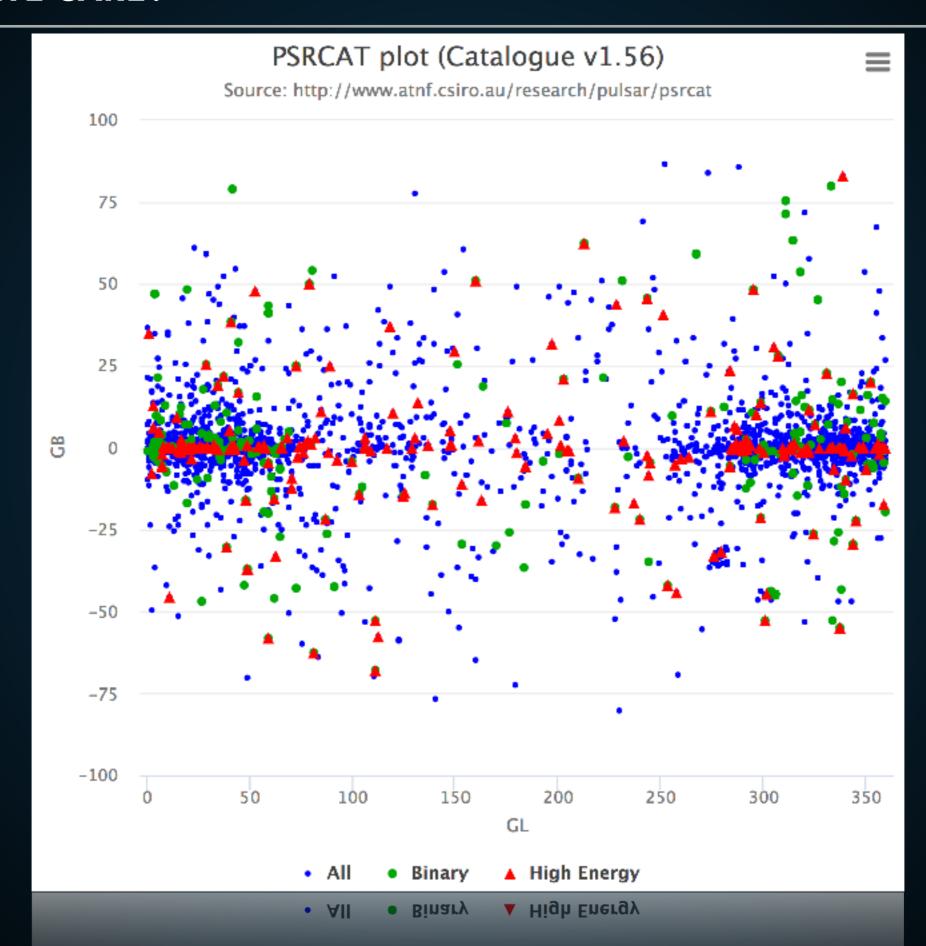
- First predicted TeV halo was detected two weeks ago by HAWC.
- Source is slightly brighter than predicted by models, which increases the predicted number of detectable TeV halos.

[Previous | Next | ADS]

HAWC detection of TeV emission near PSR B0540+23

ATel #10941; Colas Riviere (University of Maryland), Henrike Fleischhack (Michigan Technological University), Andres Sandoval (Universidad Nacional Autonoma de Mexico) on behalf of the HAWC collaboration on 9 Nov 2017; 23:11 UT

Credential Certification: Colas Riviere (riviere@umd.edu)


Subjects: Gamma Ray, TeV, VHE, Pulsar

The High Altitude Water Cherenkov (HAWC) collaboration reports the discovery of a new TeV gamma-ray source HAWC J0543+233. It was discovered in a search for extended sources of radius 0.5° in a dataset of 911 days (ranging from November 2014 to August 2017) with a test statistic value of 36 (60 pre-trials), following the method presented in Abeysekara et al. 2017, ApJ, 843, 40. The measured J2000.0 equatorial position is RA=85.78°, Dec=23.40° with a statistical uncertainty of 0.2°. HAWC J0543+233 was close to passing the selection criteria of the 2HWC catalog (Abeysekara et al. 2017, ApJ, 843, 40, see HAWC J0543+233 in 2HWC map), which it now fulfills with the additional data.

HAWC J0543+233 is positionally coincident with the pulsar PSR B0540+23 (Edot = 4.1e+34 erg s-1, dist = 1.56 kpc, age = 253 kyr). It is the third low Edot, middle-aged pulsar announced to be detected with a TeV halo, along with Geminga and B0656+14. It was predicted to be one of the next such detection by HAWC by Linden et al., 2017, arXiv:1703.09704.

Using a simple source model consisting of a disk of radius 0.5° , the measured spectral index is -2.3 \pm 0.2 and the differential flux at 7 TeV is $(7.9 \pm 2.3) \times 10^{\circ}$ -15 TeV-1 cm-2 s-1. The errors are statistical only. Further morphological and spectral analysis as well as studies of the systematic uncertainty are ongoing.

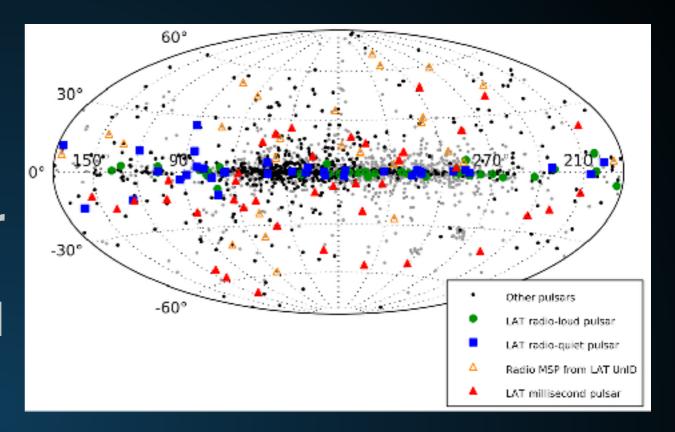
Tauris and Manchester (1998) calculated the beaming angle from a population of young and middle-aged pulsars.

$$f = \left[1.1 \left(\log_{10} \left(\frac{\tau}{100 \text{ Myr}}\right)\right)^2 + 15\right] \%$$

This varies between 15-30%.

1/f pulsars are unseen in radio surveys.

MISSING TEV HALOS

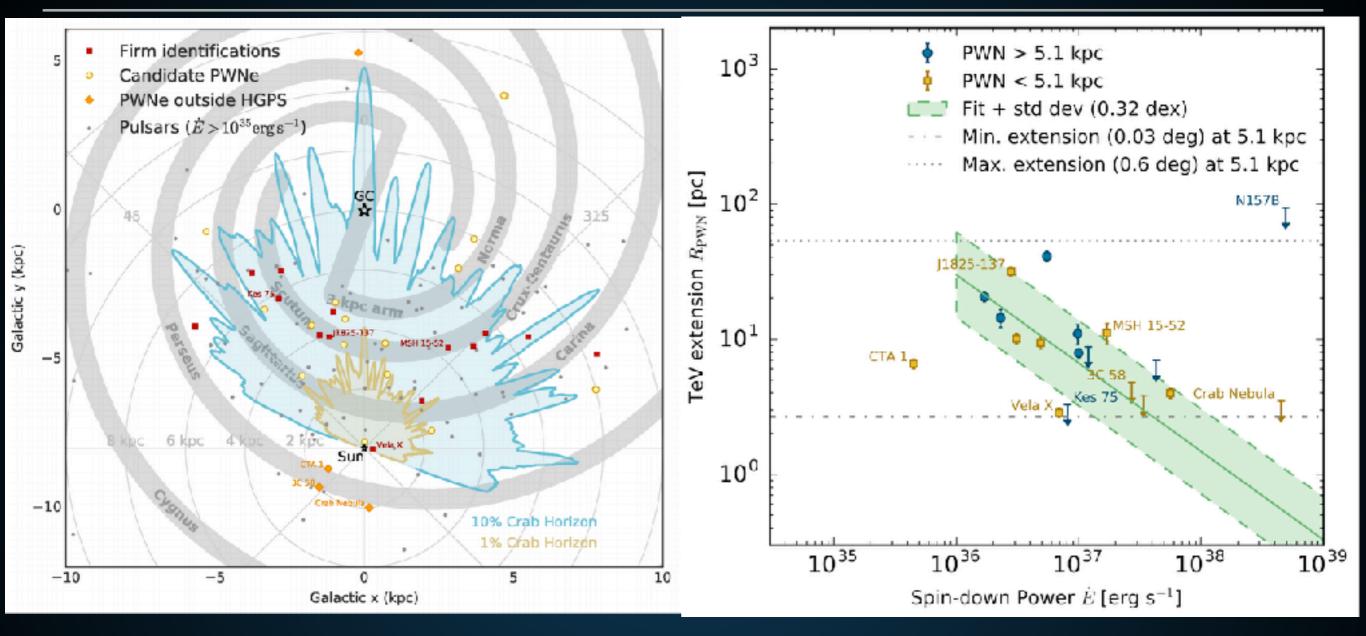

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux ($\times 10^{-15}$)	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	(kyr)	Overlap
J0700+143	B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0631+169	J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1912+099	J1913+1011	4.61	0.34°	27.36 pc	13.0	36.6	0.36	0.11°	0.7°	169	0.30
J2031+415	J2032+4127	1.70	0.11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-098	J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux ($\times 10^{-15}$)	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	(kyr)	Overlap
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9°	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08

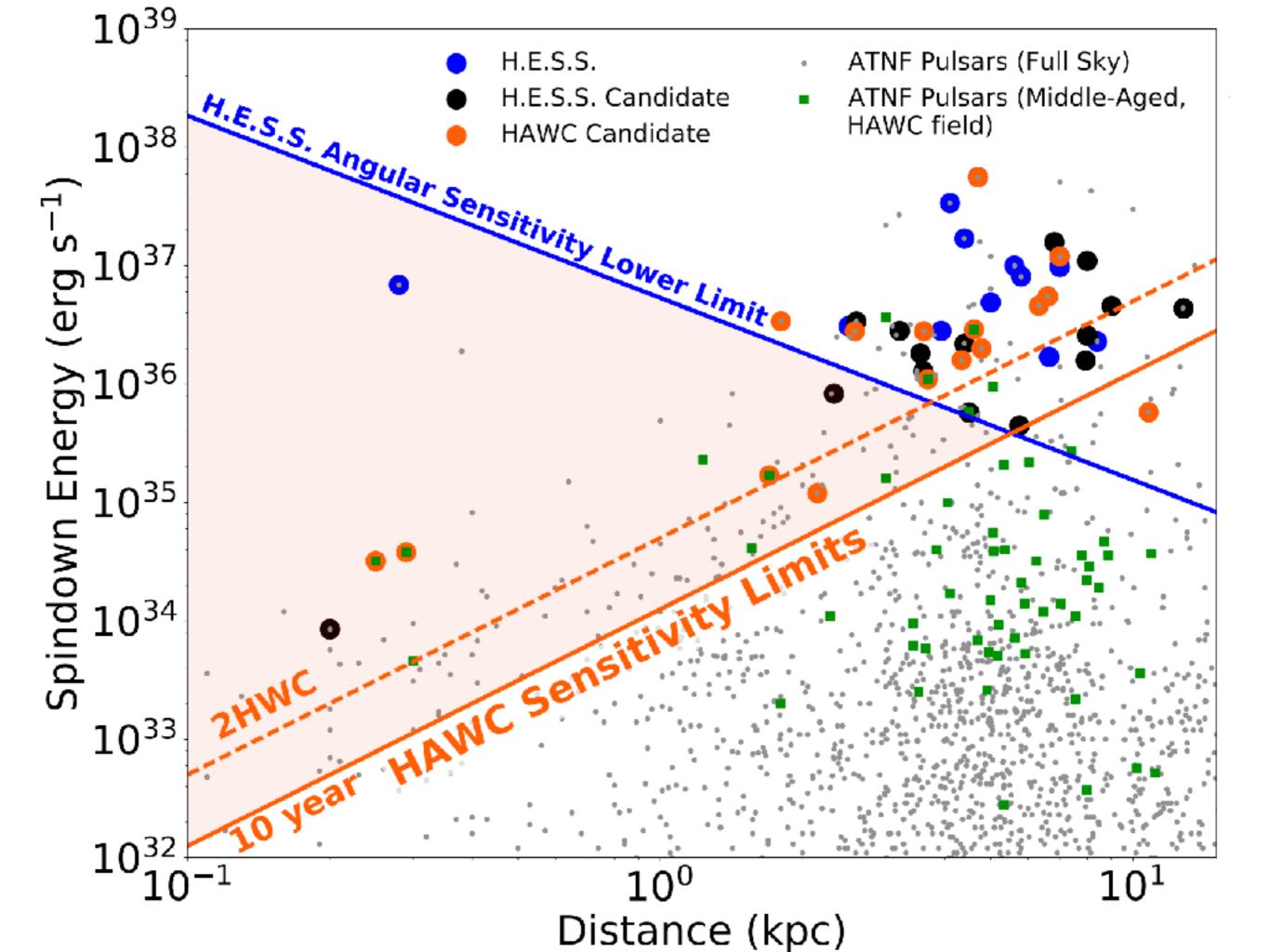
- Correcting for the beaming fraction implies that 56⁺¹⁵₋₁₁ TeV halos are currently observed by HAWC.
- However, only 39 total HAWC sources.
- Chance overlaps, SNR contamination must be taken into account.

FERMI-LAT DETECTIONS

- Fermi-LAT has detected 54 new pulsars
 - > 35 younger than 100 kyr
 - Only 5/35 in HAWC field of view

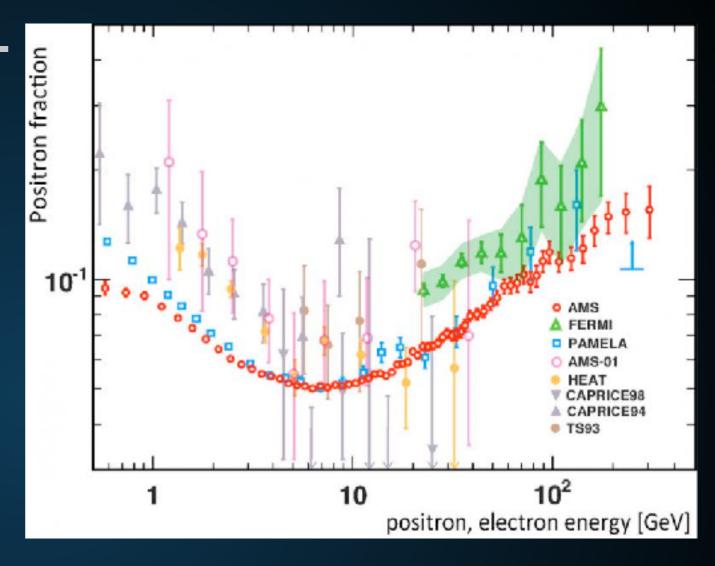

Fermi-LAT has detected only ~5 of these 37 systems.

X-RAY PWN DETECTIONS


PWNe With No Detected Pulsar							
<u>Gname</u>	other name(s)	<u>R</u> .	<u>X</u>	<u>o</u>	<u>G</u>		
G0.13-0.11						notes	
G0.9+0.1					N	notes	
G7.4-2.0	GeV J1809-2327, Tazzie				Υ	notes	
G16.7+0.1					N	notes	
G18.5-0.4	GeV J1825-1310, Ecl				Y	notes	
G20.0-0.2					N	notes	
G24.7+0.6					N	notes	
G27.8+0.6					N	notes	
G39.2-0.3	3C 396				Y	notes	
G63.7+1.1					N	notes	
G74.9+1.2	CTB 87				Υ	notes	
G119.5+10.2	CTA 1				Y	notes	
G189.1+3.0	IC 443				7	notes	
G279.8-35.8	B0453-685				N	notes	
G291.0-0.1	MSH 11-62				Y	notes	
G293.8+0.6					N	notes	
G313.3+0.1	Rabbit				Y	notes	
G318.9+0.4					N	notes	
G322.5-0.1					N	notes	
G326.3-1.8	MSH 15-56				N	notes	
G327.J-1.1					N	notes	
G328.4+0.2	MSH 15-57				N	notes	
G358.6-17.2	RX J1856.5-3754	N	N		N	notes	
G359.89-0.08					Y	notes	

X-Ray PWN have detected only ~6 of these 37 systems.

HESS/VERITAS DETECTION OF TEV HALOS


- Targeted ACTs are sensitive to the flux from TeV halos.
- ACTs are not sensitive to sources extended >0.5°.
- Large parameter space available only to HAWC.

Implication III: The positron excess is due to pulsar activity

 Rising fraction of cosmicray positrons at energies above 10 GeV

Standard Cosmic-Ray Secondary Production predicts the positron fraction falls as ~E-0.4.

Indicates a new primary source of high energy e+e-pairs.

It is not energetically possible for Geminga to produce the magnetic field or ISRF that these electrons interact with.

$$U = \frac{1}{8\pi} B^{2} = \frac{(10\mu G)^{2}}{8\pi}$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

$$\int_{0}^{10} e^{r} U dV = 5 \times 10^{-9} erg$$

$$= 5 \times 10^{-9} erg$$

We can use typical ISM values (5 μ G; 1 eV cm⁻³) to characterize interactions.

Nearly equal energy to synchrotron and ICS.

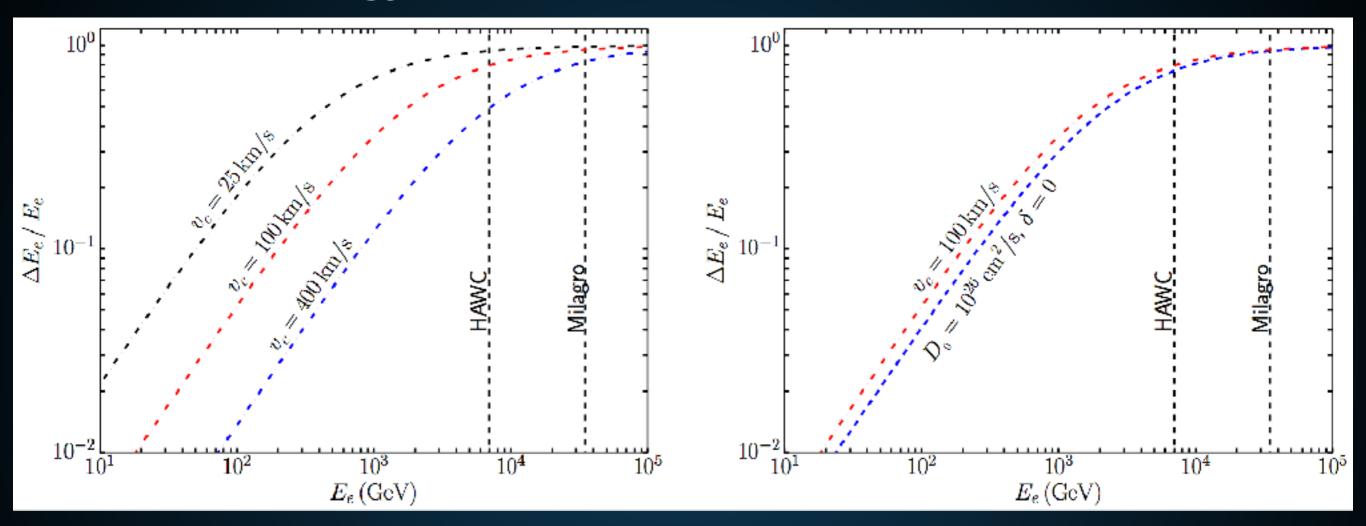
The energy loss timescale in the ISM (5 μG; 1 eV cm⁻³) is approximately:

$$\tau_{\rm loss} \approx 2 \ \times \ 10^4 \ {\rm yr} \ \left(\frac{10 \ {\rm TeV}}{E_e}\right)$$

HAWC Observations Strongly Favor Pulsar Interpretations of the For ISM Diffusion ($D_0 = 5 \times 10^{28} \text{ cm}^2\text{s}^{-1}$ δ =0.33), this implies a radial extent of ~250 pc.

TI ECO TOIL

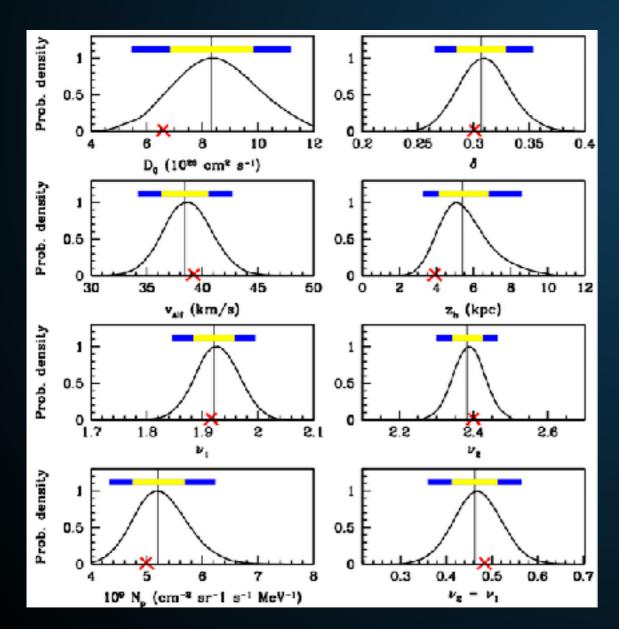
▶ 10 pc extent indicates $D_0 \sim 7 \times 10^{25} \text{ cm}^2 \text{ s}^{-1}$

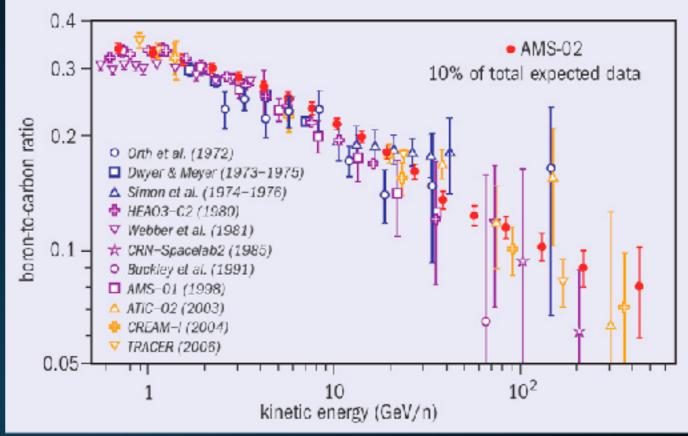

Cosmic-Ray Positron Excess Dan Hooper, and Ke F a Formi National Accolerator Danard mont of Astronomy of Astronomy of Materials of Chicagon Transactions Fermi National Accelerator Laboratory, Conter for Particle Astrophysic burning of Chicago, Karli Institute for Commentary of Chicago, Karli Institute for Chicago University of Chicago, Kavii Institute for Cosmological Physics, University of Chicago, Kavi Institute for Cosmological Physics of Physics and Astronomy, The Johns Hopkins U

COSMIC-RAY DIFFUSION IS STANDARD

- In general, low-energy electrons travel farther before losing their energy.
- How much bigger can the region of inhibited diffusion be?
- Low-energy electrons should escape!

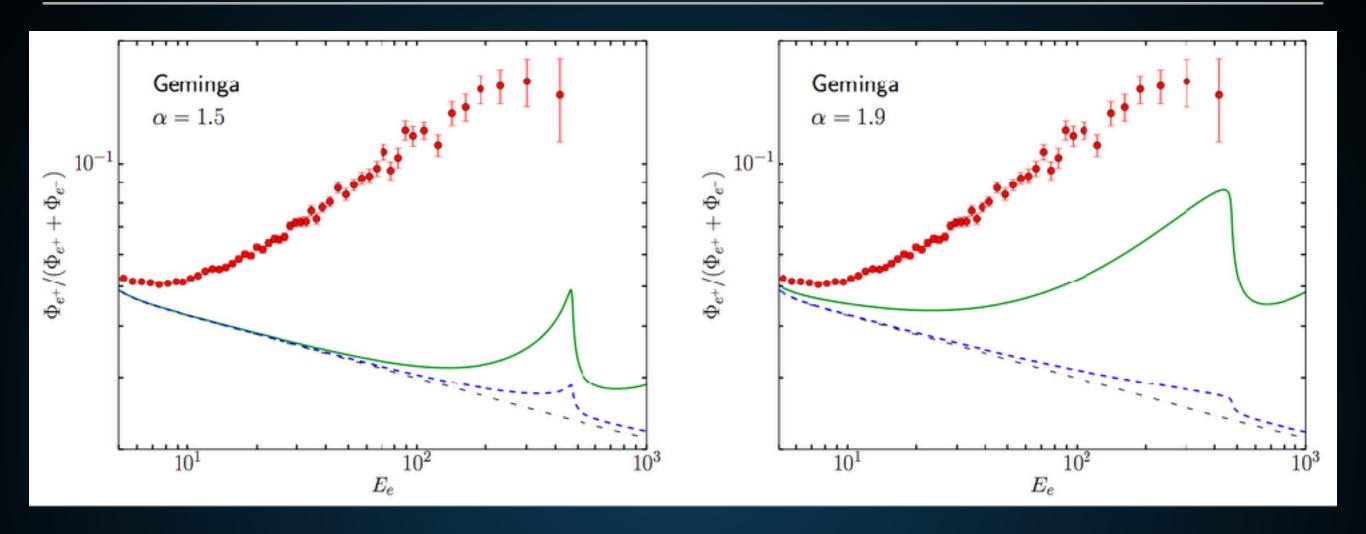
WHAT ABOUT THE LOW-ENERGY ELECTRONS?


Fraction of energy lost before Electrons Travel a constant distance

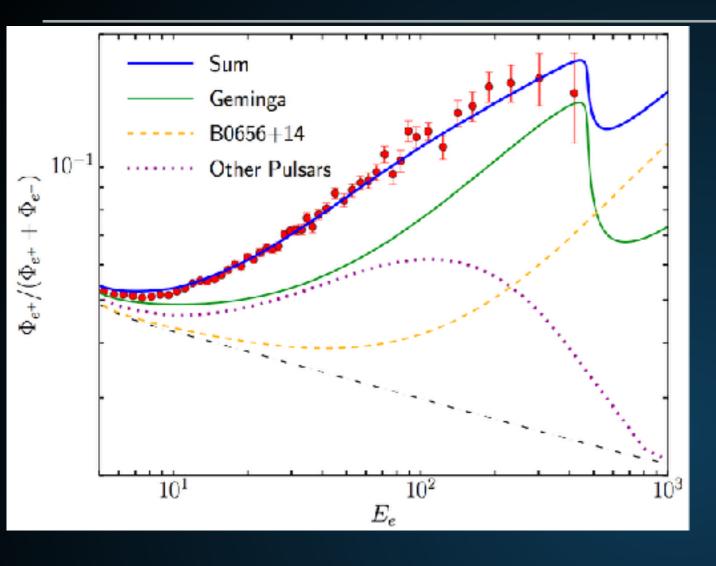


- Low-energy electrons lose energy slower, must travel farther.
- This is true in both convective case (shown here) as well as most diffusive (e.g. Kolmogorov, Kraichnian) scenarios.
- Where do these electrons go?

EFFECT OF TEV HALOS ON ISM PROPAGATION


 Multiple cosmic-ray observations indicate that the average diffusion constant is ~5x10²⁸ cm²s⁻¹

- Assume that diffusion reverts back to the standard case outside the TeV halo.
- Primary difference between our results and those from HAWC.


THE POSITRON FRACTION FROM TEV HALOS

 Geminga can individually produce nearly half of the positron excess.

Models not fit to the data - this contribution must exist.

THE POSITRON FRACTION FROM TEV HALOS

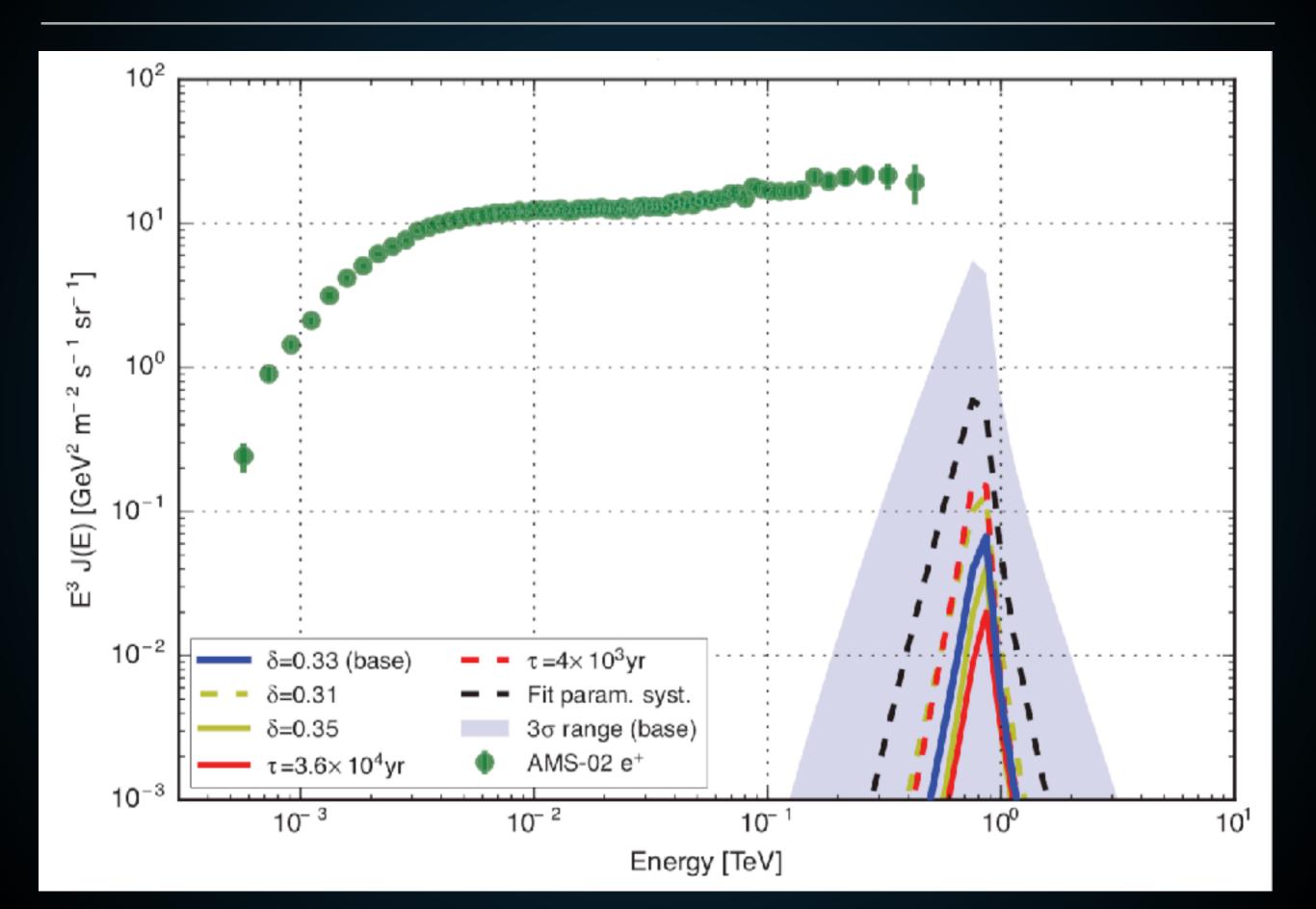
- Total Contribution from:
 - Geminga
 - Monogem
 - Average of other young pulsars

- *Braking index slightly changed to fit model to data.
- Reasonable models can be exactly fit to the excess.

PARTICLE ASTROPHYSICS

Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

- A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez, R. Arceo,
- J. C. Arteaga-Velázquez, D. Avila Rojas, H. A. Ayala Solares, A. S. Barber, 1
- N. Bautista-Elivar, A. Becerril, E. Belmont-Moreno, S. Y. BenZvi, D. Berley, A. Bernal, 10
- J. Braun, 11 C. Brisbois, 6 K. S. Caballero-Mora, 4 T. Capistrán, 12 A. Carramiñana, 12
- S. Casanova, 13,14 M. Castillo, U. Cotti, J. Cotzomi, S. Coutiño de León, C. De León, 15
- E. De la Fuente, 16 B. L. Dingus, 2 M. A. DuVernois, 11 J. C. Díaz-Vélez, 16 R. W. Ellsworth, 17
- K. Engel, O. Enríquez-Rivera, B. D. W. Fiorino, N. Fraija, O J. A. García-González,
- F. Garfias, 10 M. Gerhardt, 6 A. González Muñoz, 3 M. M. González, 10 J. A. Goodman, 9
- Z. Hampel-Arias, 11 J. P. Harding, 2 S. Hernández, 3 A. Hernández-Almada, 3 J. Hinton, 14
- B. Hona, 6 C. M. Hui, 19 P. Hüntemeyer, 6 A. Iriarte, 10 A. Jardin-Blicq, 14 V. Joshi, 14
- S. Kaufmann, D. Kieda, A. Lara, R. J. Lauer, W. H. Lee, D. Lennarz, L
- H. León Vargas, J. T. Linnemann, A. L. Longinotti, G. Luis Raya, R. Luna-García, 3
- R. López-Coto, 14* K. Malone, 24 S. S. Marinelli, 22 O. Martinez, 15 I. Martinez-Castellanos, 9
- J. Martínez-Castro, 23 H. Martínez-Huerta, 25 J. A. Matthews, 20 P. Miranda-Romagnoli, 26
- E. Moreno, 15 M. Mostafá, 24 L. Nellen, 27 M. Newbold, 1 M. U. Nisa, 8 R. Noriega-Papaqui, 26
- R. Pelayo, 23 J. Pretz, 24 E. G. Pérez-Pérez, 7 Z. Ren, 20 C. D. Rho, 8 C. Rivière, 9
- D. Rosa-González, 12 M. Rosenberg, 24 E. Ruiz-Velasco, 3 H. Salazar, 15 F. Salesa Greus, 134
- A. Sandoval, M. Schneider, H. Schoorlemmer, G. Sinnis, A. J. Smith, R. W. Springer,
- P. Surajbali, 14 I. Taboada, 21 O. Tibolla, 4 K. Tollefson, 22 I. Torres, 12 T. N. Ukwatta, 2
- G. Vianello,29 T. Weisgarber,11 S. Westerhoff,11 I. G. Wisher,11 J. Wood,11 T. Yapici,22
- G. Yodh, ³⁰ P. W. Younk, ² A. Zepeda, ^{25,4} H. Zhou, ² F. Guo, ² J. Hahn, ¹⁴ H. Li, ² H. Zhang ²

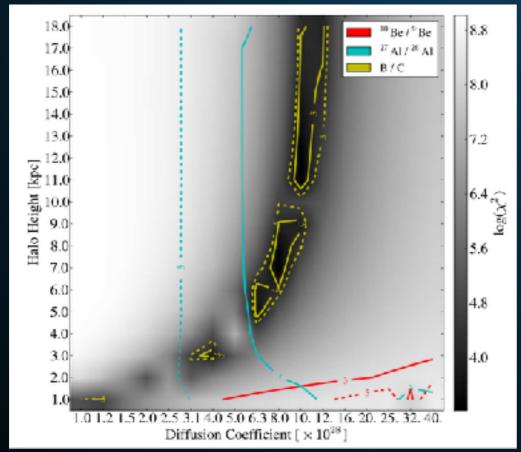

Area Telescope (2) and AMS [Alpha Magnetic Spectrometer (3)] experiments; the latter also showed that the excess signal extends to hundreds of giga-electron volts.

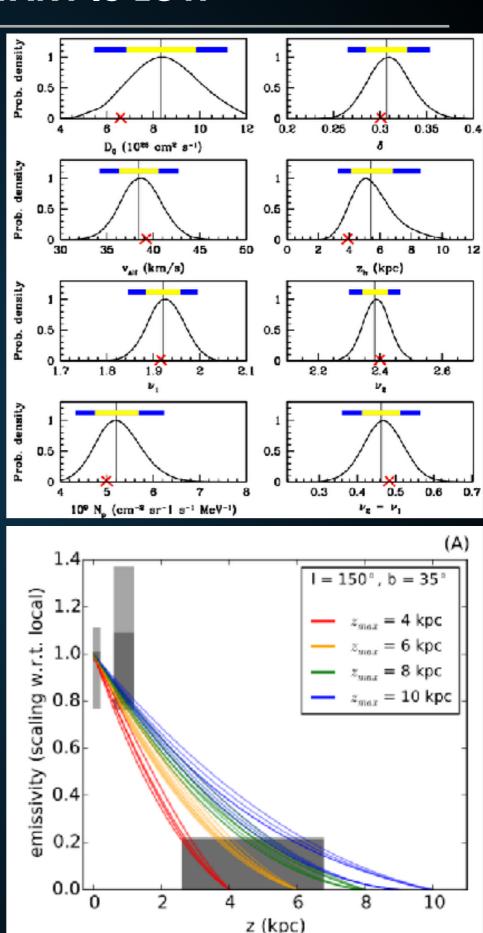
Energy losses experienced in interstellar magnetic and radiation fields by the highest-energy positrons require that their sources lie within a few hundred parsecs from Earth (4). Nearby potential cosmic-ray accelerators—for example, pulsar wind nebulae (PWNe)-have been proposed as the sources of these extra positrons (5, 6). A PWN consists of a rapidly spinning neutron star (pulsar) that produces a wind of electrons and positrons that are further accelerated by the surrounding shock with the interstellar medium (ISM). There are a handful of known pulsars that are both close enough to be candidate sources and sufficiently old for the highest-energy positrons to have had time to arrive at Earth (7,8). Nearby dark matter particle interactions could also produce positrons (9). Both PWNe and dark matter sources should also produce gamma rays that could potentially be observed coming from the sources, unlike positrons (whose paths are deflected by magnetic fields).


Recently, the High-Altitude Water Cherenkov Observatory (HAWC) collaboration reported the detection of tera-electron volt gamma rays around two nearby pulsars, which are among those proposed to produce the local positrons (10). HAWC is a wide-field-of-view, continuously operating detector of extensive air showers initiated by gamma rays and cosmic rays interacting in the atmo-

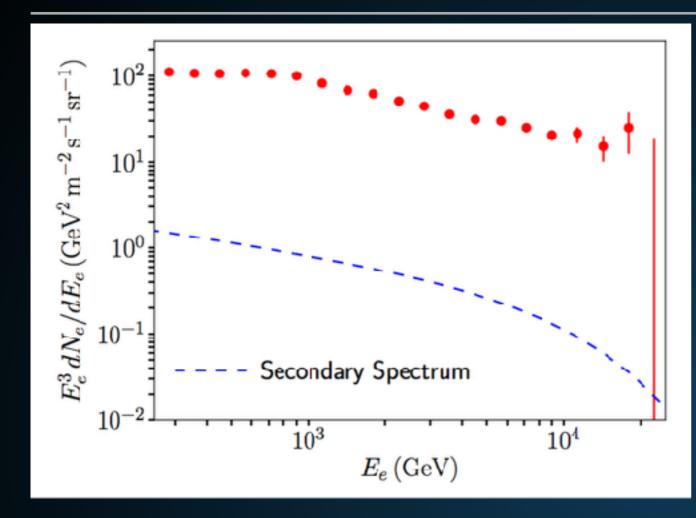
mhone (11) The enoular regulation improves from

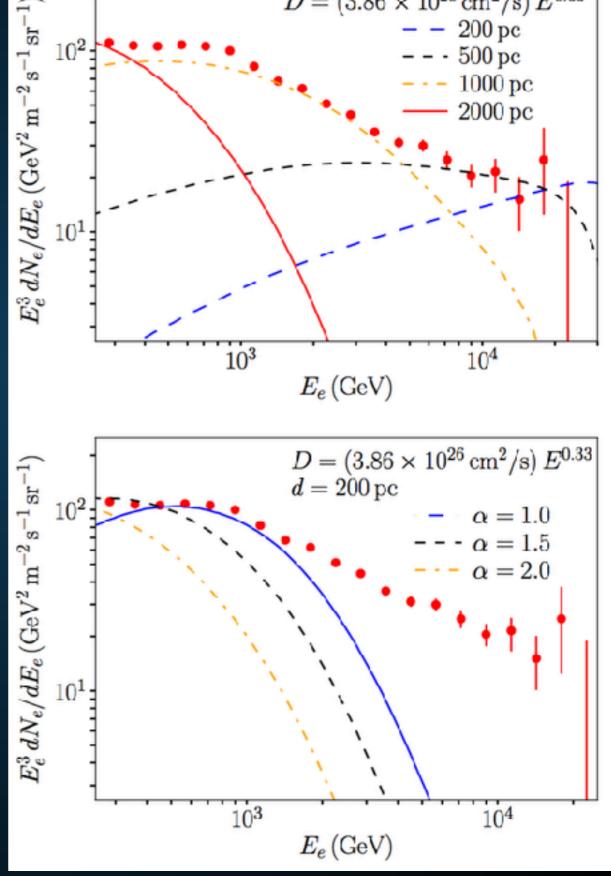
RECENT RESULTS BY THE HAWC COLLABORATION

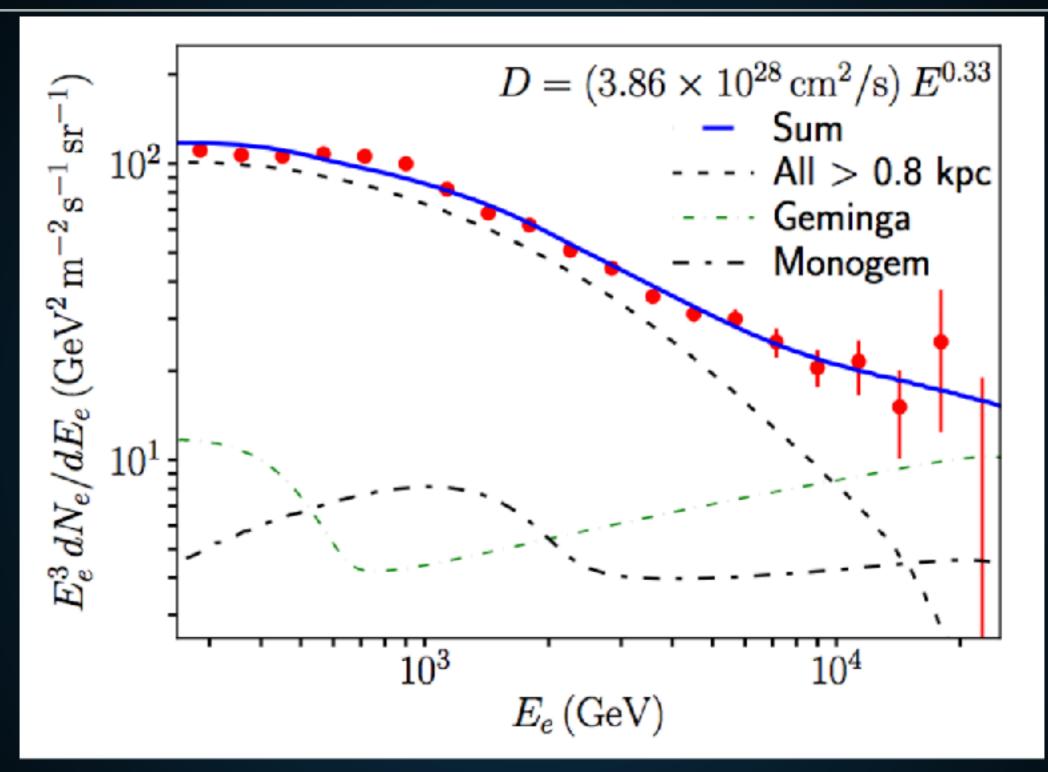



CAN THE DIFFUSION CONSTANT BETWEEN GEMINGA AND US BE LOW?

SCENARIO 1: THE MILKY WAY DIFFUSION CONSTANT IS LOW

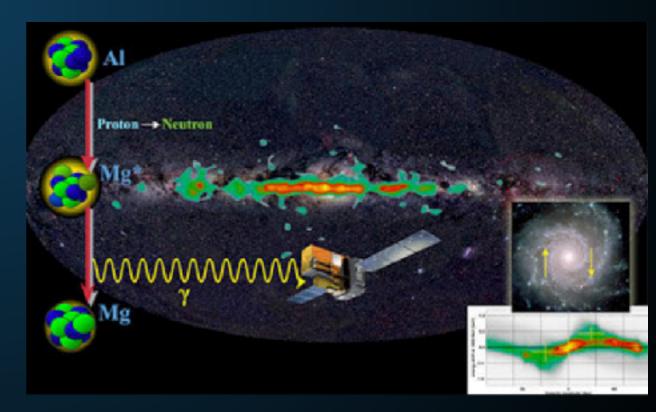

- Cosmic-Ray primary to secondary ratios tell us about:
 - The average grammage encountered by cosmic-rays before they escape the galaxy (e.g. B/C)
 - The average time cosmic-rays are confined in the galaxy (10Be/9Be).




 $D = (3.86 \times 10^{28} \,\mathrm{cm}^2/\mathrm{s}) \,E^{0.33}$

 $200\,\mathrm{pc}$

- H.E.S.S has detected 10-20 TeV e+e- from a primary electron population.
- If the diffusion coefficient is low, this source must be within ~30 pc of Earth



If the diffusion coefficient near Earth is similar to the standard value, pulsars naturally explain the H.E.S.S. e⁺e⁻ flux.

GEMINGA ISN'T SPECIAL

$$\begin{split} f &\sim \frac{N_{\rm region} \times \frac{4\pi}{3} r_{\rm region}^3}{\pi R_{\rm MW}^2 \times 2 z_{\rm MW}} \\ &\sim 0.25 \times \left(\frac{r_{\rm region}}{100\,{\rm pc}}\right)^3 \left(\frac{\dot{N}_{\rm SN}}{0.03\,{\rm yr}^{-1}}\right) \left(\frac{\tau_{\rm region}}{10^6\,{\rm yr}}\right) \left(\frac{20\,{\rm kpc}}{R_{\rm MW}}\right)^2 \left(\frac{200\,{\rm pc}}{z_{\rm MW}}\right) \end{split}$$

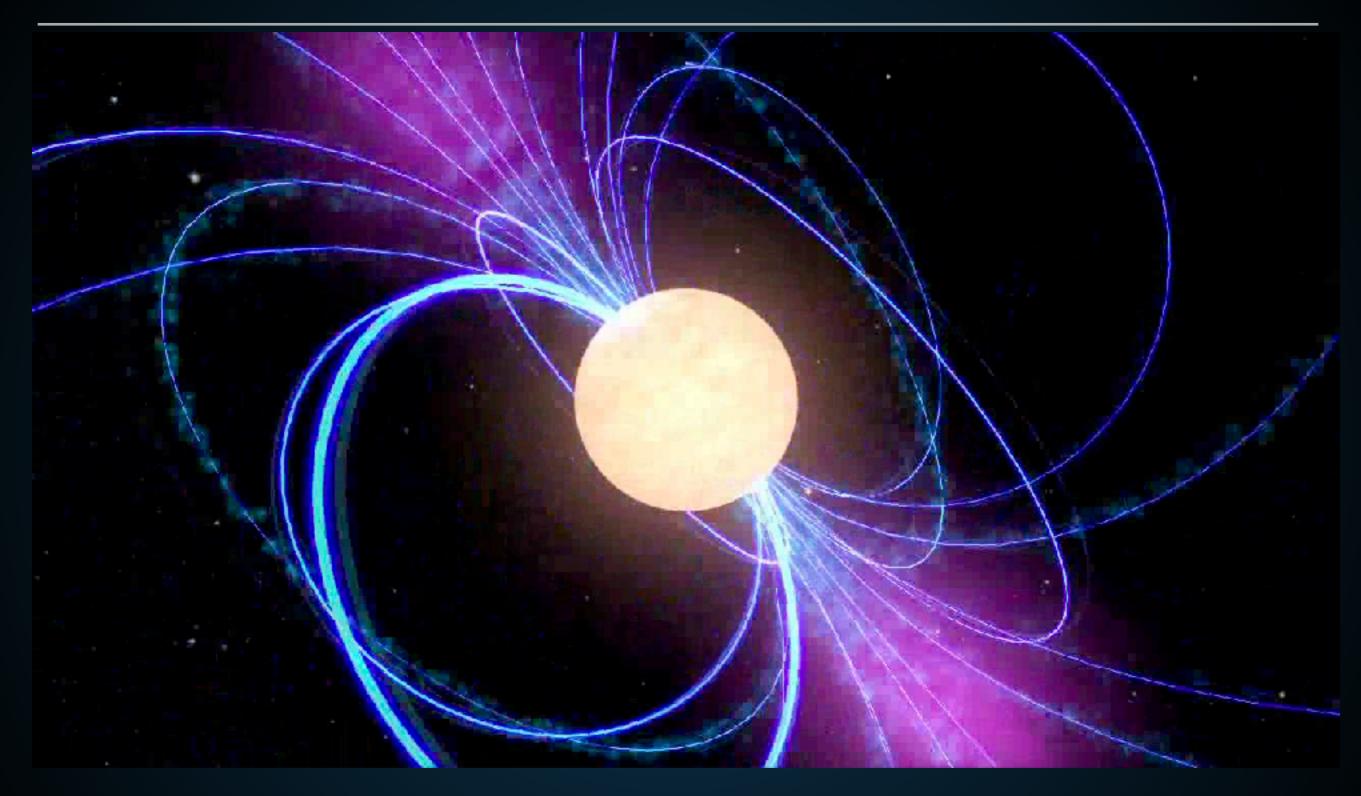
- ▶ Galactic Supernova rate is ~0.02 yr⁻¹.
- If each supernova (and natal pulsar) produces a large diffusion region, the diffusion constant should be low everywhere.
- Only alternative is that a very unique event produced the local bubble.

GC Pulsar Population

Pulsars Explain
Pevatron

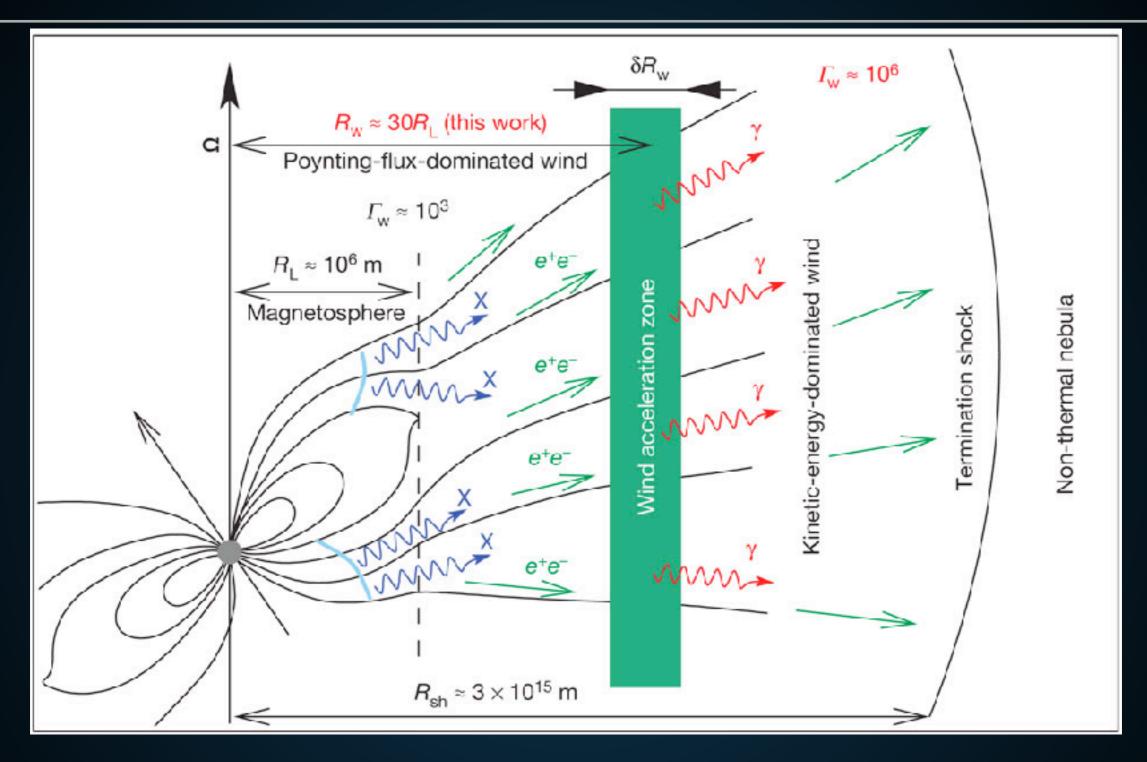
Low Energy
Electrons
Escape

Pulsars Explain Positron Excess


TeV halos explain the TeV excess.

Most TeV
sources are TeV
halos
High Energy
Electrons
Trapped

Pulsar
Population &
Energetics

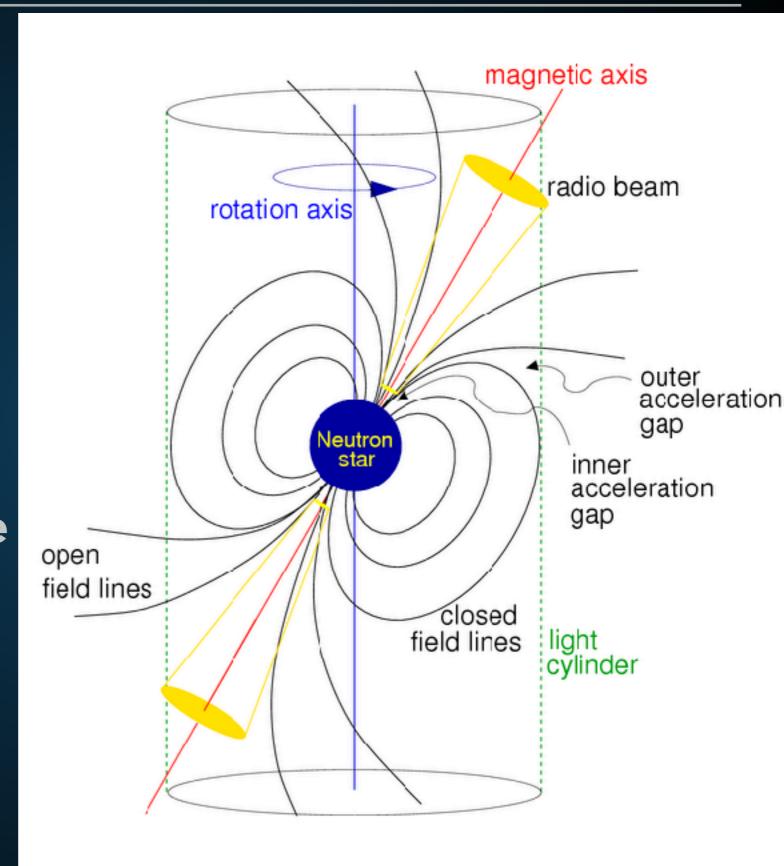

A Simple Model for TeV Halos

PULSARS AS ASTROPHYSICAL ACCELERATORS

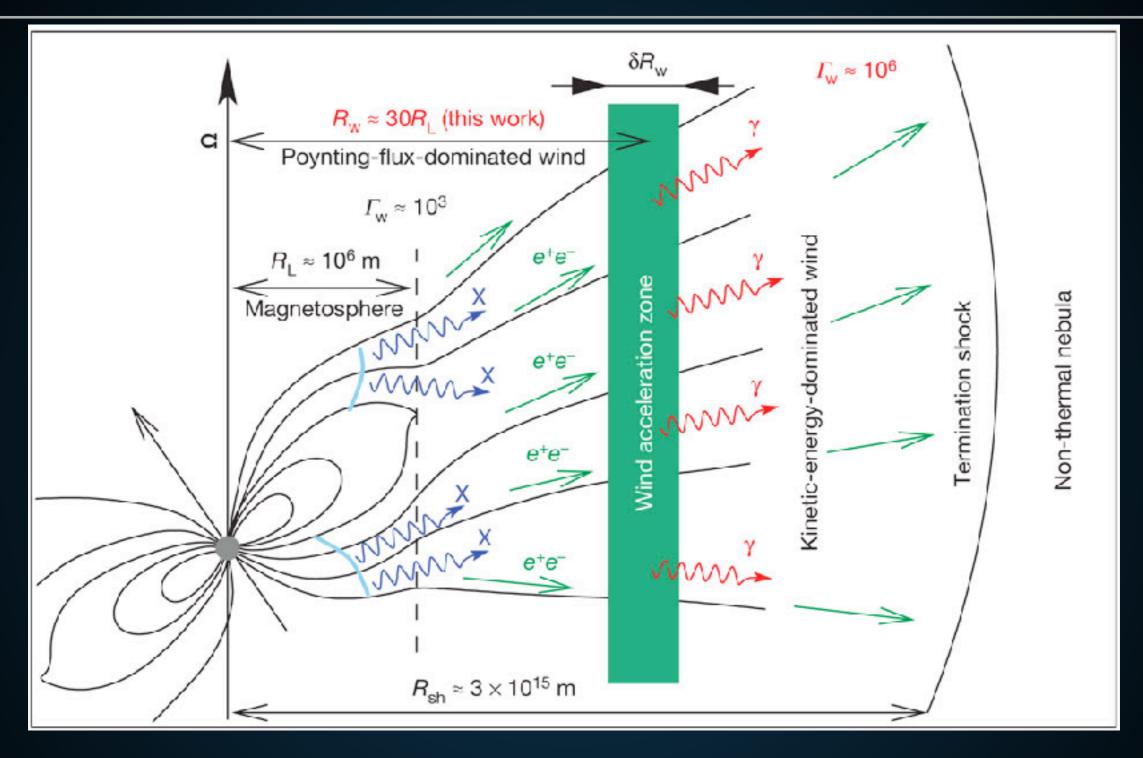
Rotational Kinetic Energy of the neutron star is the <u>ultimate power source</u> of all emission in this problem.

PRODUCTION OF ELECTRON AND POSITRON PAIRS

- ► Electrons boiled off the pulsar surface produce e+e- pairs
- Pair multiplicity is high, but model dependent.


PULSARS AS ASTROPHYSICAL ACCELERATORS

radio beam


gamma-ray beam

e+e- acceleration in pulsar magnetosphere

e+e- acceleration at termination shock

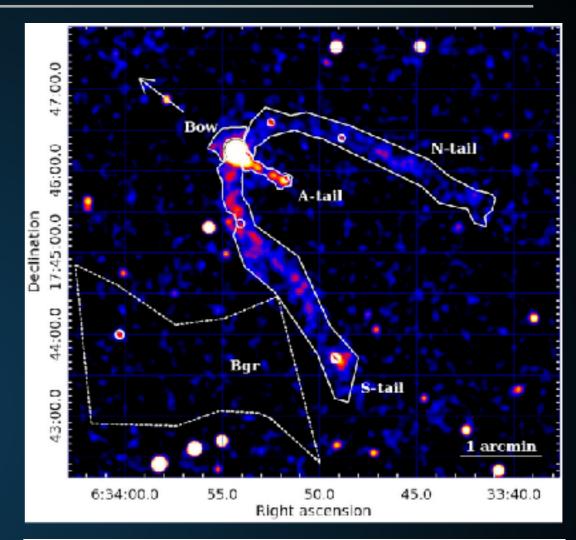
PRODUCTION OF ELECTRON AND POSITRON PAIRS

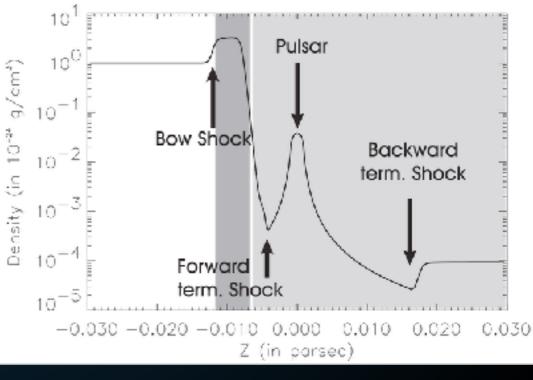
- Final e+e- spectrum is model dependent.
- Understanding this is important for MSPs.

REACCELERATION IN THE PULSAR WIND NEBULA

- PWN termination shock:
 - Voltage Drop > 30 PV
 - e+e- energy > 1 PeV (known from synchrotron)

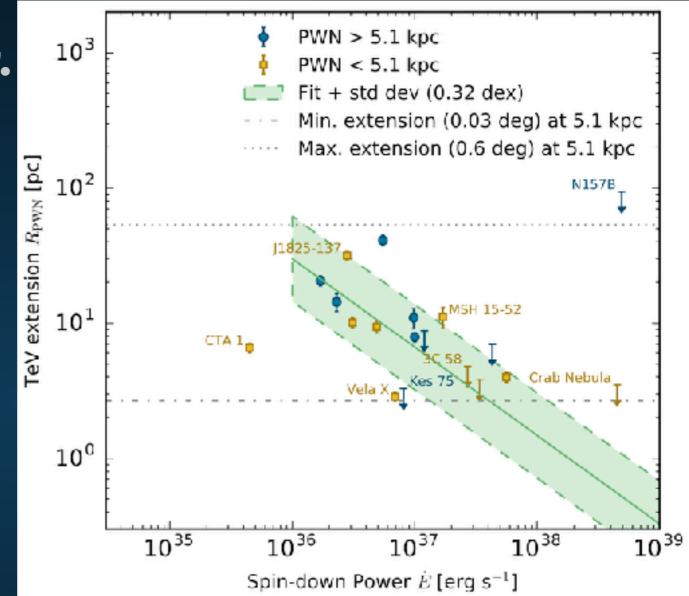
▶ Resets e+e- spectrum.


- Many Possible Models:
 - 1st Order Fermi-Acceleration
 - Magnetic Reconnection
 - Shock-Driven Reconnection


LOW-ENERGY OBSERVATIONS OF PULSAR WIND NEBULAE

- Extent of radio and X-Ray PWN is approximately 1 pc.
- Termination shock produced when ISM energy density overwhelms and stops the relativistic pulsar wind.

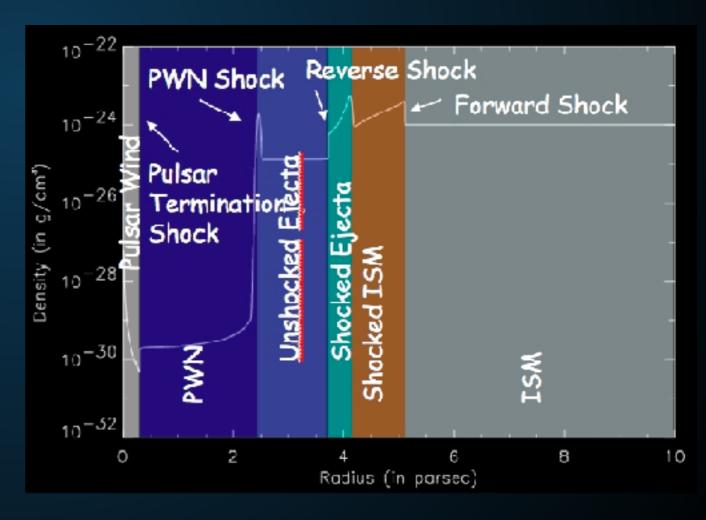
$$R_{
m PWN} \simeq 1.5 \left(rac{\dot{E}}{10^{35}\,{
m erg/s}}
ight)^{1/2} imes \ \left(rac{n_{
m gas}}{1\,{
m cm}^{-3}}
ight)^{-1/2} \left(rac{v}{100\,{
m km/s}}
ight)^{-3/2} {
m pc}$$


NOTE: The radial extent of PWN is explained by a known physical mechanism.

TeV Halos are much larger.

Particularly true in lowenergy systems.

NOTE: This has the opposite energy dependence as the

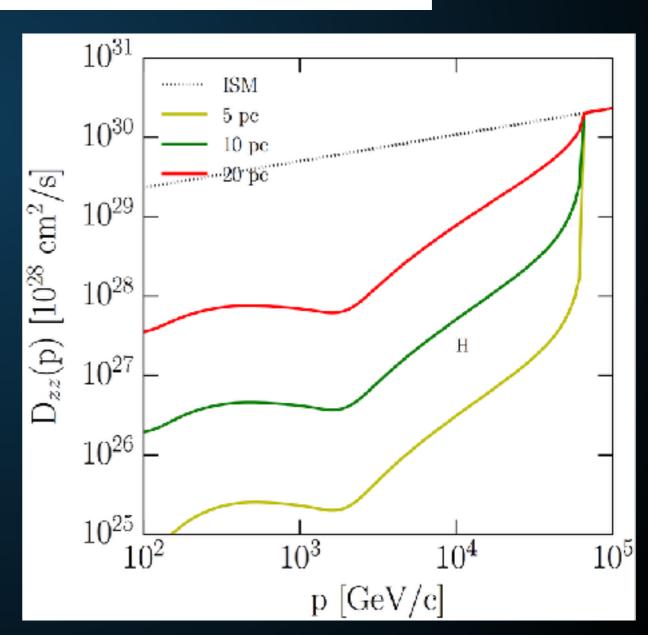

X-Ray PWN.

$$R_{
m PWN} \simeq 1.5 \left(rac{\dot{E}}{10^{35}\,{
m erg/s}}
ight)^{1/2} imes \ \left(rac{n_{
m gas}}{1\,{
m cm}^{-3}}
ight)^{-1/2} \left(rac{v}{100\,{
m km/s}}
ight)^{-3/2} {
m pc}$$

- TeV halos are a new feature
 - 3 orders of magnitude larger than PWN in volume
 - Opposite energy dependence

 PWN are morphologically connected to the physics of the termination shock

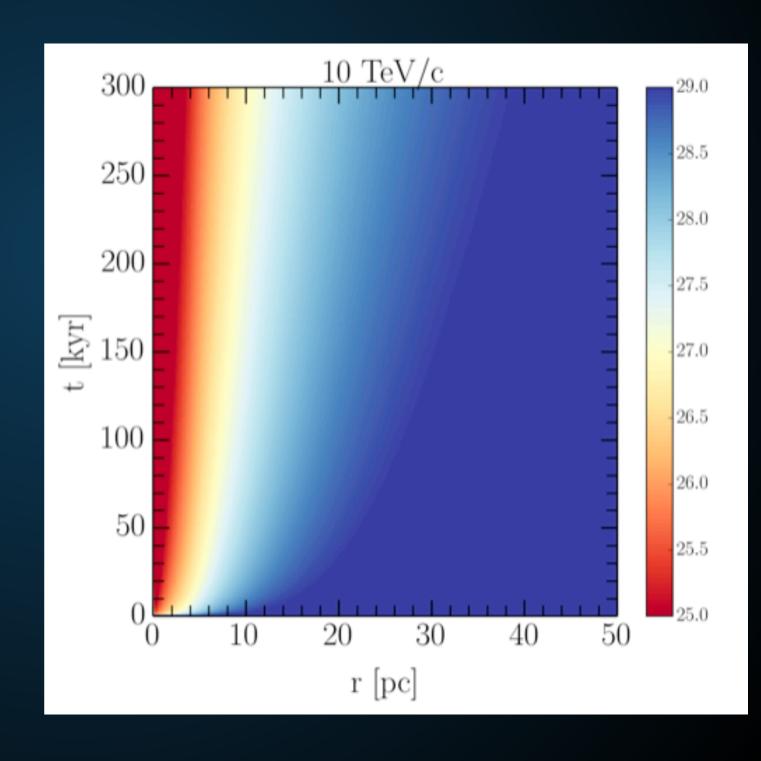
TeV halos need a similar morphological description.



 Low-diffusion constants can be induced in regions with significant cosmic-ray injection

$$D_{\text{loc}}(p) = \frac{\beta(p)cr_L(p)}{3} \left[\frac{2\pi}{3c_k} \frac{cf_0 p_0^4}{dU_0} \beta(p) r_L(p) \left(\frac{p}{p_0} \right)^{4-\alpha} \exp\left(-\frac{p}{p_c} \right) \right]^{-2/3}$$

Steep cosmic-ray gradients generate Alfven waves which propagate along the cosmic-ray gradients.


Because the Alfven waves are resonant with the particles, they dominate particle diffusion.

 Low-diffusion constants can be induced in regions with significant cosmic-ray injection

- At early times, diffusion is only slightly inhibited.
 - The electrons responsible for the positron excess escape!

- At late times, diffusion is highly inhibited.
 - The electrons responsible for the TeV halo are confined!

Several Methods to confirm TeV halo detections:

X-Ray halos

X-Ray PWN

An X-Ray halo with an identical morphology as the TeV halo <u>must</u> exist.

$$U = \frac{1}{8\pi} B^{2} = \frac{(10\mu G)^{2}}{8\pi}$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

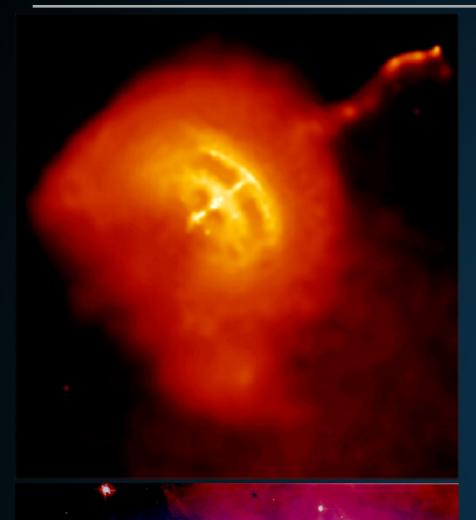
$$\int_{0}^{10} e^{r} U dV = 5 \times 10^{-9} e^{r}g$$

$$= 5 \times 10^{-9} e^{r}g$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

$$= 5 \times 10^{-9} e^{rg}$$

$$= 4 \times 10^{-12} \frac{erg}{cm^{3}}$$

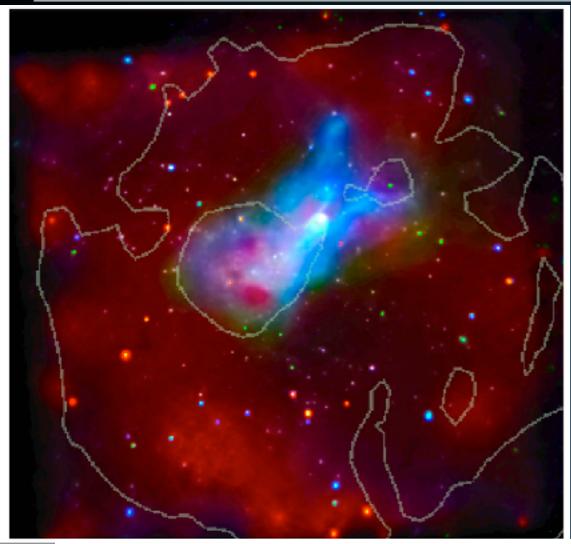

$$= 5 \times 10^{-9} e^{rg}$$

$$= 6 \times 10^{-9} e^{rg$$

$$E_{\text{sync,critical}} = 22 \text{ eV} \left(\frac{B}{5 \,\mu G} \right) \left(\frac{E_e}{10 \,\text{TeV}} \right)^2$$

 However, the signal has a low surface brightness and peaks at a low energy.

X-RAY PULSAR WIND NEBULAE



- Larger magnetic fields make compact PWN easier to observe
 - Synchrotron dominated
 - Higher energy peak

More distant sources easier to see.

Significant observation times require careful HAWC analysis.

- Possible Detection! (G327-1.1)
- Young Pulsar (17.4 kyr)
- Two PWN
 - Diffuse PWN has significantly softer spectrum

	Region	Area (arcsec ²)	Cts (1000)	$\frac{N_{\rm H}}{(10^{22}~{ m cm}^{-2})}$	Photon Index	Amplitude (10 ⁻⁴)	kT (keV)	$ au^{ au}$ (10 ¹² s cm ⁻³)	Norm. (10 ⁻³)	F ₁ (10	F_2	Red. χ^2
1	Compact Source	84.657	6.34	$1.93^{+0.08}_{-0.08}$	$1.61^{+0.08}_{-0.07}$	$1.05^{+0.11}_{-0.10}$				0.45		0.80
2	Cometary PWN	971.22	7.75	1.93	$1.62^{+0.08}_{-0.07}$	$1.47^{+0.16}_{-0.14}$				1.09		• • • •
3	Trail East	537.42	2.13	1.93	$1.84^{+0.12}_{-0.12}$	$0.44^{+0.07}_{-0.06}$		111		0.27		
4	Trail West	766.56	3.12	1.93	$1.80^{+0.11}_{-0.11}$	$0.61^{+0.09}_{-0.08}$				0.39		
5	Trail 1	424.45	1.98	1.93	$1.76^{+0.12}_{-0.12}$	$0.30^{+0.05}$	• • • •			0.26		
6	Trail 2	588.19	2.13	1.93	$1.95^{+0.11}_{-0.11}$	$0.49^{+0.05}_{-0.06}$				0.28		
7	Trail 3	994.92	2.99	1.93	$2.09^{+0.10}_{-0.10}$	$0.78^{+0.09}_{-0.08}$	• • • •			0.42		
8	Trail 4	839.48	2.38	1.93	$2.28^{+0.12}_{-0.12}$	$0.74^{+0.09}_{-0.09}$				0.37		
9	Prong East	828.58	1.66	1.93	$1.72^{+0.14}_{-0.14}$	$0.30^{+0.06}_{-0.05}$				0.27		
10	Prong West	971.22	2.06	1.93	1 05+0.14	0.44 + 0.08				1.09		
11	Diffuse PWN*	20007	27.7	1.93	$2.11^{+0.04}_{-0.05}$	6.01+0.37	$0.23^{+0.14}_{-0.05}$	$0.21^{+0.88}_{-0.16}$	$6.0^{+16}_{-4.0}$	3.68	17.7	0.82
12	Relic PWN*	26787	17.2	1.93	$2.58^{+0.07}_{-0.10}$	$6.51^{+0.53}_{-0.71}$	0.23	0.21	$6.9^{+18}_{-5.5}$	3.14	20.3	
1.0		04.45.0	1.00	0.00+0.23	a aa±0.20	4 00+0.52			0.0	0.04		

X-RAY PWN DETECTIONS

PWNe With No Detected Pulsar							
<u>Gname</u>	other name(s)	<u>R</u> .	<u>X</u>	<u>o</u>	<u>G</u>		
G0.13-0.11						notes	
G0.9+0.1					N	notes	
G7.4-2.0	GeV J1809-2327, Tazzie				Υ	notes	
G16.7+0.1					N	notes	
G18.5-0.4	GeV J1825-1310, Ecl				Y	notes	
G20.0-0.2					N	notes	
G24.7+0.6					N	notes	
G27.8+0.6					N	notes	
G39.2-0.3	3C 396				Y	notes	
G63.7+1.1					N	notes	
G74.9+1.2	CTB 87				Υ	notes	
G119.5+10.2	CTA 1				Y	notes	
G189.1+3.0	IC 443				7	notes	
G279.8-35.8	B0453-685				N	notes	
G291.0-0.1	MSH 11-62				Y	notes	
G293.8+0.6					N	notes	
G313.3+0.1	Rabbit				Y	notes	
G318.9+0.4					N	notes	
G322.5-0.1					N	notes	
G326.3-1.8	MSH 15-56				N	notes	
G327.J-1.1					N	notes	
G328.4+0.2	MSH 15-57				N	notes	
G358.6-17.2	RX J1856.5-3754	N	N		N	notes	
G359.89-0.08					Y	notes	

X-Ray PWN have detected only ~6 of these 37 systems.

TeV observations open up a new window into understanding Milky Way pulsars.

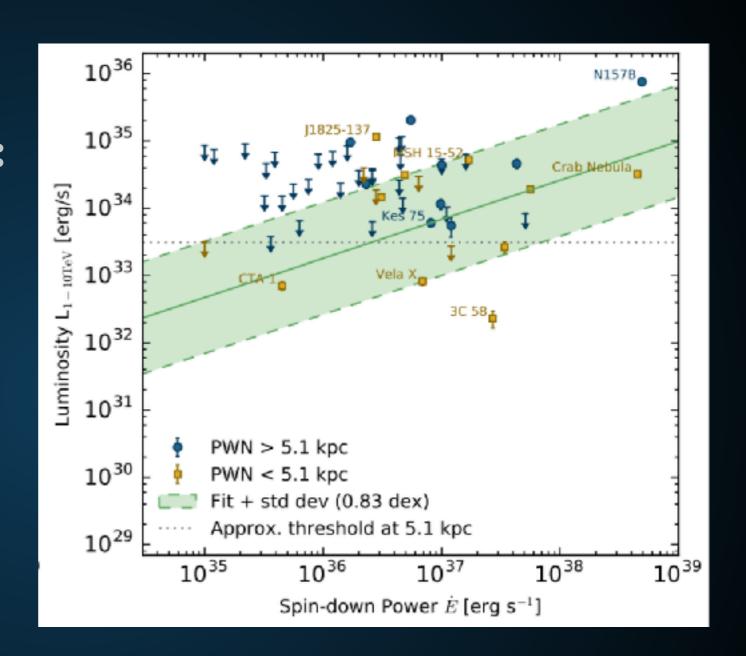
- Early indications:
 - TeV halos produce most of the TeV sources observed by ACTs and HAWC
 - TeV halos dominate the diffuse TeV emission in our galaxy.
 - Positron Excess is due to pulsar activity

- Additional implications:
 - Young pulsar braking index

MSPs?

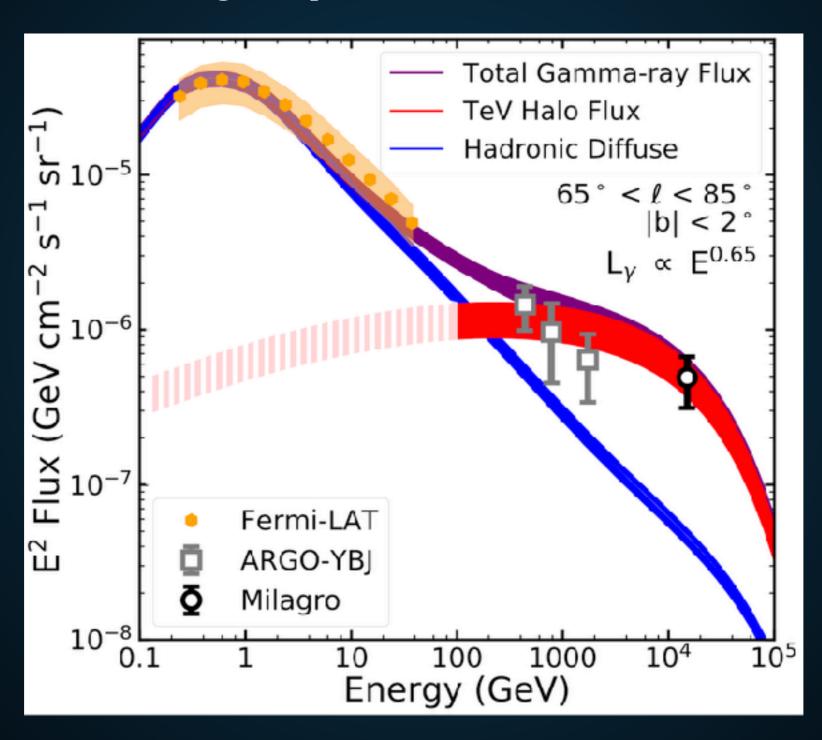
Galactic cosmic-ray diffusion

Source of IceCube neutrinos


TeV Dark Matter Constraints

Extra Slides

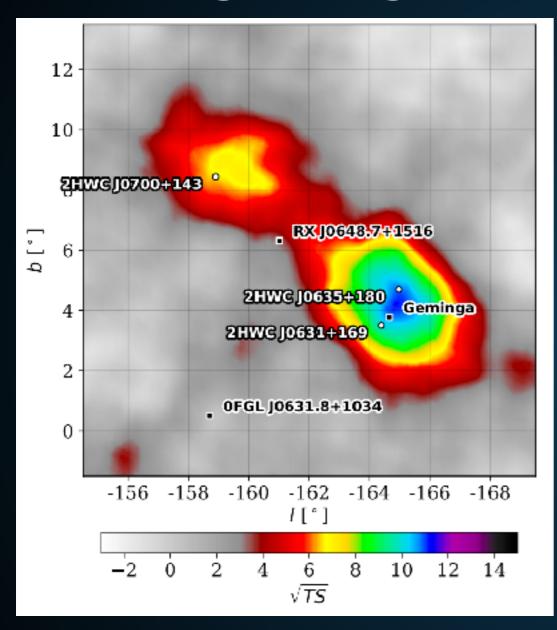
What if the "Geminga"-like model is wrong?


Alternatively can utilize HESS results which find:

$$L = E_{dot}^{0.59}$$

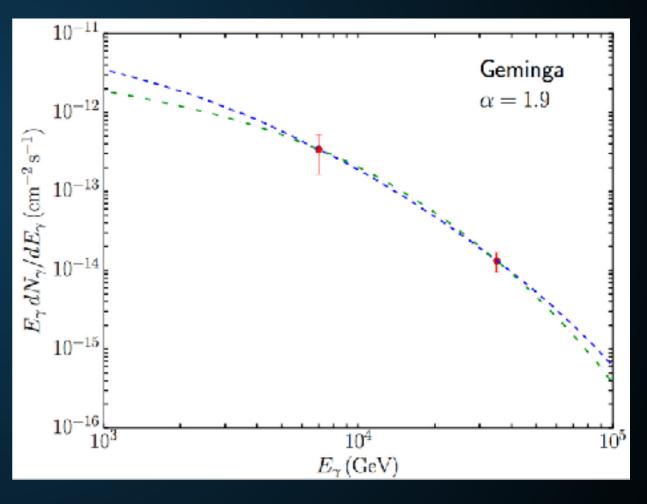
$$\phi_{\rm TeV\;halo} = \left(\frac{\dot{E}_{\rm psr}}{\dot{E}_{\rm Geminga}}\right) \left(\frac{d_{\rm Geminga}^2}{d_{\rm psr}^2}\right) \phi_{\rm Geminga}$$

TeV halos naturally explain the TeV excess!



How can we prove that we've found a TeV halo?

What produces the electron population?


Geminga is Bright

Indicative of significant electron cooling

Geminga has a hard-spectrum

Name	Tested radius	Index	$F_7 \times 10^{15}$	TeVCat		
	[°]	[T				
2HWC J0631+169	-	-2.57 ± 0.15	6.7 ± 1.5	Geminga		
21	2.0	-2.23 ± 0.08	48.7 ± 6.9	Geminga		
2HWC J0635+180	-	-2.56 ± 0.16	6.5 ± 1.5	Geminga		

Indicative of minimal electron cooling

Energy constraints demand that ~30 TeV electrons lose the majority of their energy before exiting TeV halo.

This strongly constrains the efficiency of particle propagation near the halo.

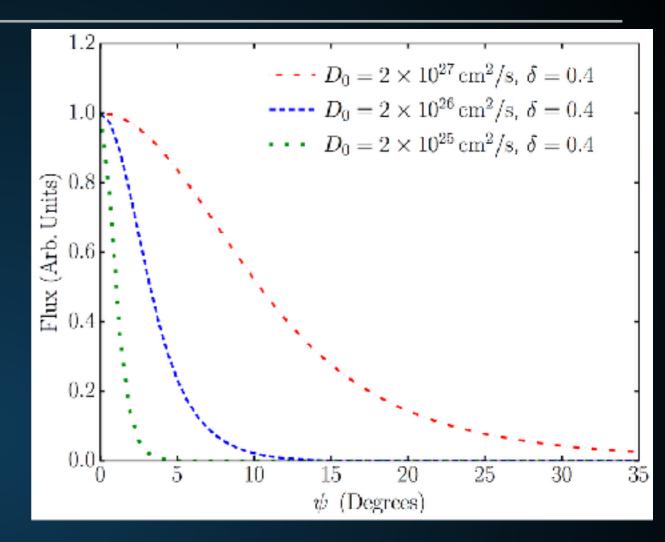
$$D = \frac{L^2}{6\tau} = \frac{(10 \text{ pc})^2}{6(3.1 \times 10^4 \text{ yr})} = \frac{(3.08 \times 10^{19} \text{ cm})^2}{5.86 \times 10^{12} \text{ s}}$$

Provides strong evidence for new morphological feature.

Measured Geminga flux translates to an intensity:

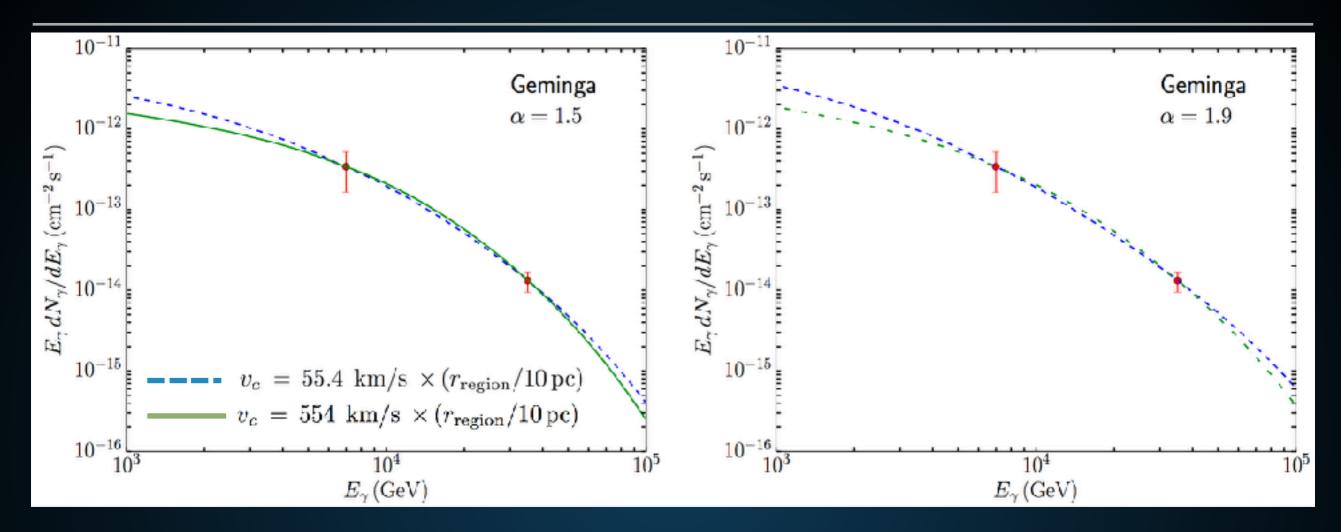
For the best-fit spectrum, this requires an e+e-injection:

$$3.8 \times 10^{33} \text{ erg s}^{-1}$$


Total Spindown Power of Geminga is:

$$3.4 \times 10^{34} \text{ erg s}^{-1}$$

Roughly 10% conversion efficiency to e+e-!

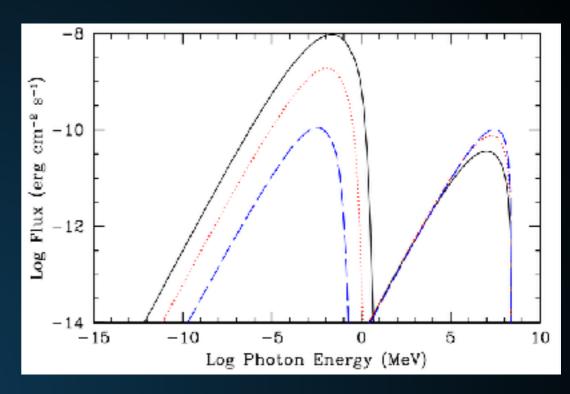

COSMIC-RAY DIFFUSION IN A TEV HALO

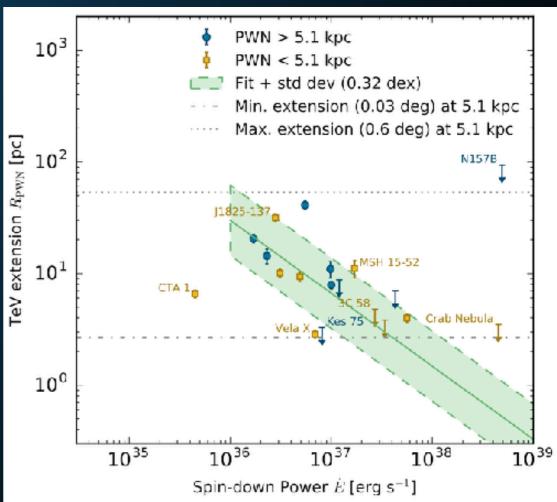
- Actual source of particle propagation is unknown:
 - Diffusion
 - Advection

- Particle propagation near pulsars must be orders of magnitude less efficient than typical for the ISM.
- Continues far outside the termination shock of a pulsar with no SNR.

GEMINGA SPECTRUM INDICATIVE OF CONVECTION

- However, Bohmian diffusion is incompatible with the gamma-ray spectrum.
- If low-energy electrons are cooled, the spectrum at 7 TeV should be significantly softer.

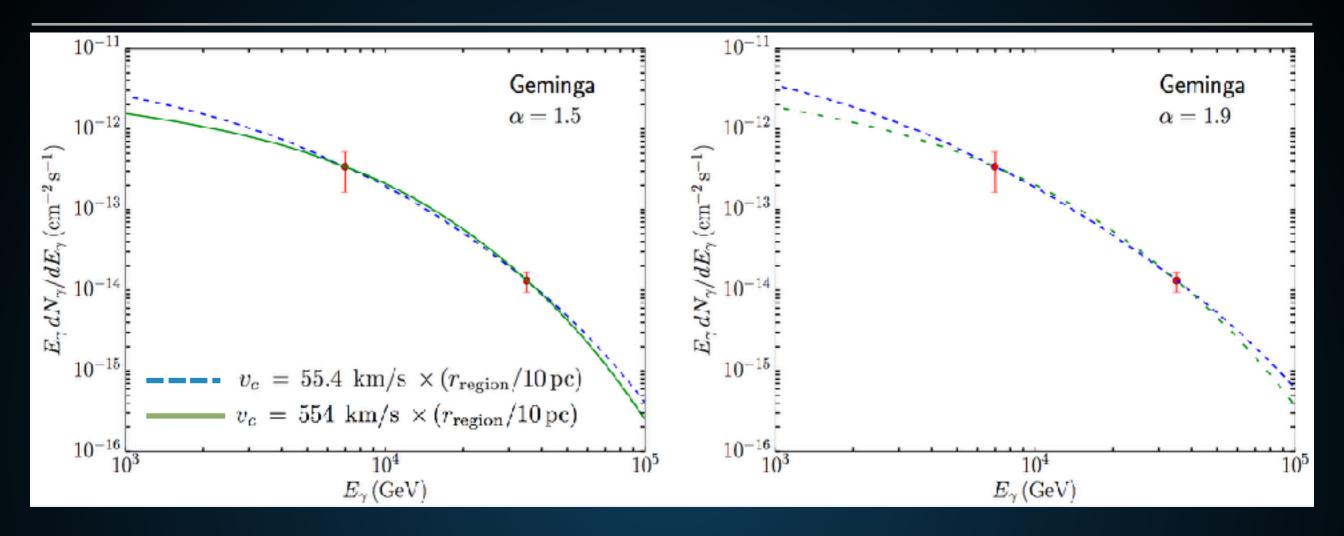

These arguments only set a <u>lower limit</u> on the TeV halo size.


What if TeV halos are much larger, but the TeV electrons die at ~10 pc?

Will need to answer this question on the population level. Maybe TeV electrons propagate farther?

- Energy loss time-scale: E⁻¹.
- **▶** Propagation Distance in t: E^{0.16}.
- ► Size of Halo: E^{-0.33}.

Moving from PeV to ~50 TeV electrons leads to 10x larger radius.

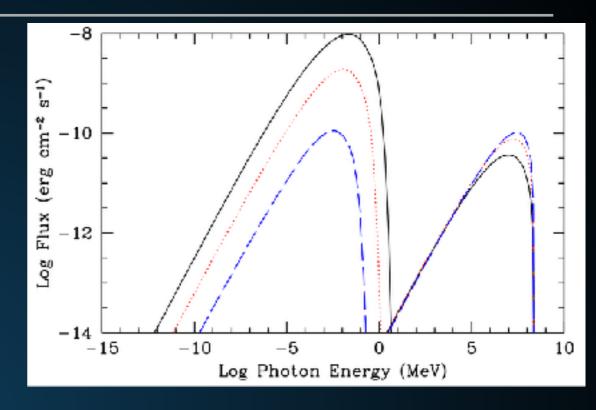


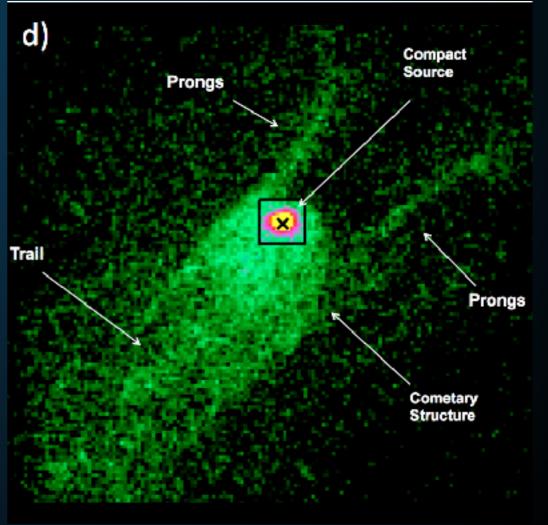
 Will now use Geminga as a standard template for TeV halos.

- Bright (nearby)
- High latitude (low background)
- Middle-Aged (no associated SNR)

Would get same (actually slightly better) results if we used Monogem.

GEMINGA SPECTRUM INDICATIVE OF CONVECTION

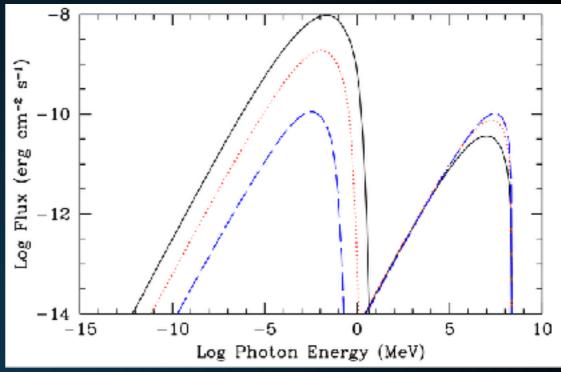

- Geminga spectrum is fit better with convective models.
- Energy-independent diffusion provides identical results
- Best-fit spectral-index (-2.23 +/- 0.08) prefers high convection

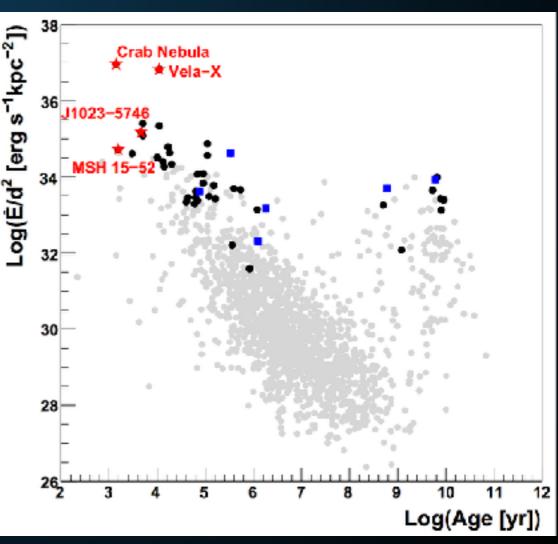

Cooling dominated by 20 μG magnetic field.

Energy loss time: ~40 years

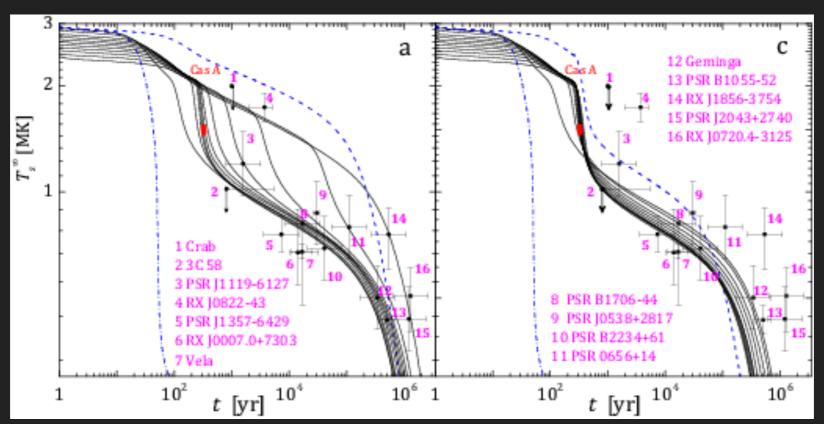
Distance Traveled: ~6 pc for standard diffusion constant. Real diffusion must be slower.

The spectrum changes as a function of distance and time.

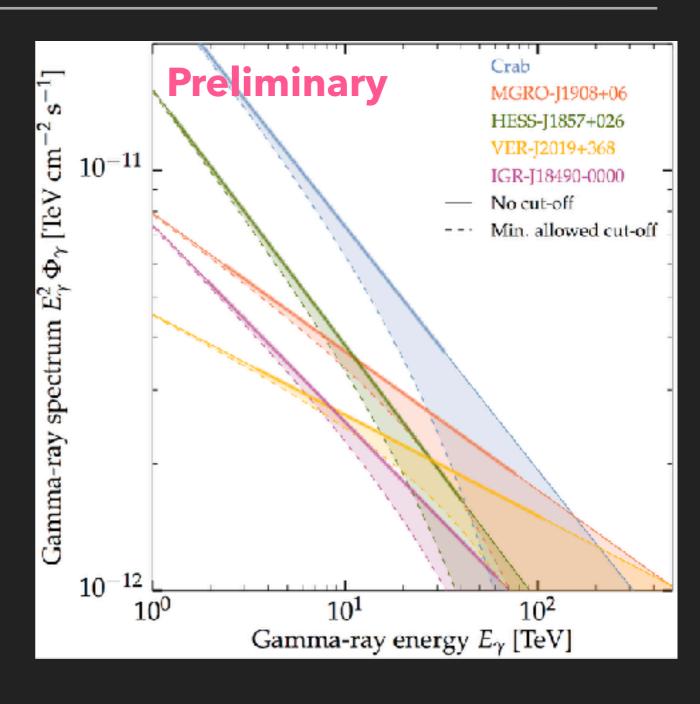




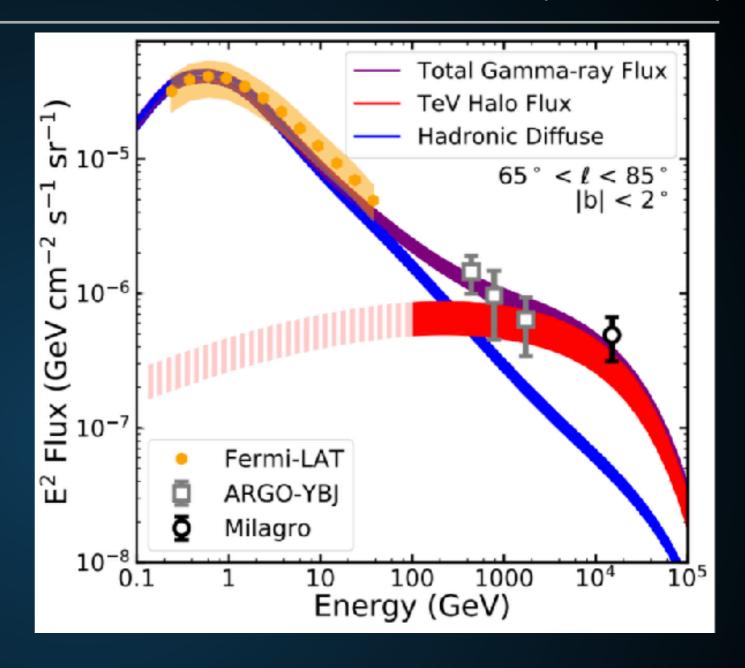
Gamma-Ray produced through ICS should accompany synchrotron emission.


Synchrotron observations imply very hard GeV gammaray spectrum.

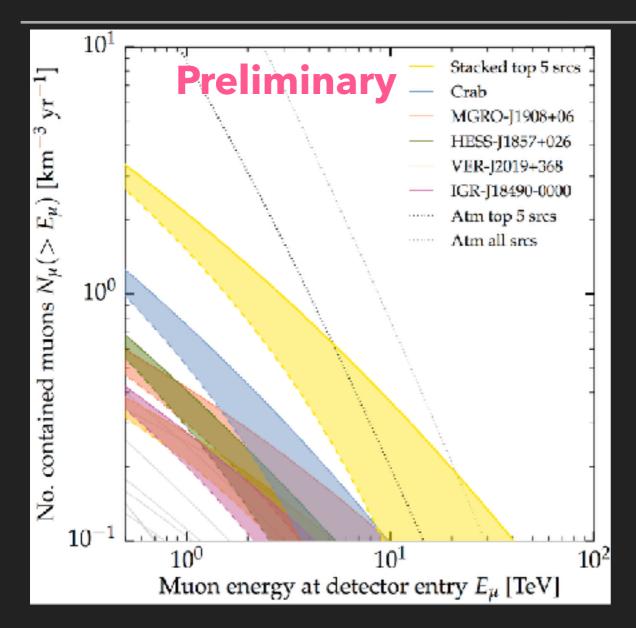
 Conclusively prove leptonic nature of emission.

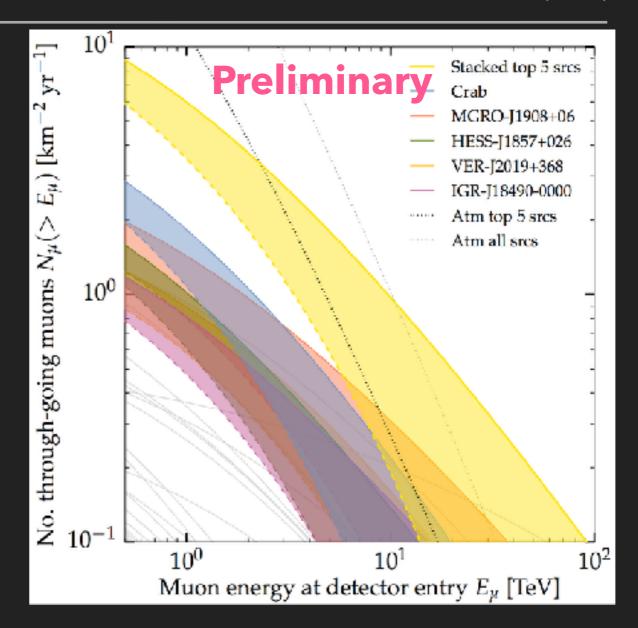

THERMAL PULSAR EMISSION

- Hot neutron stars can also be observed via their isotropic thermal emission.
- ▶ X-Ray observations can be sensitive to ~2 kpc for 10⁶ K NS.
- Cooler NS extremely hard to see.
- Could potentially detect a system which has recently ceased producing TeV particles.

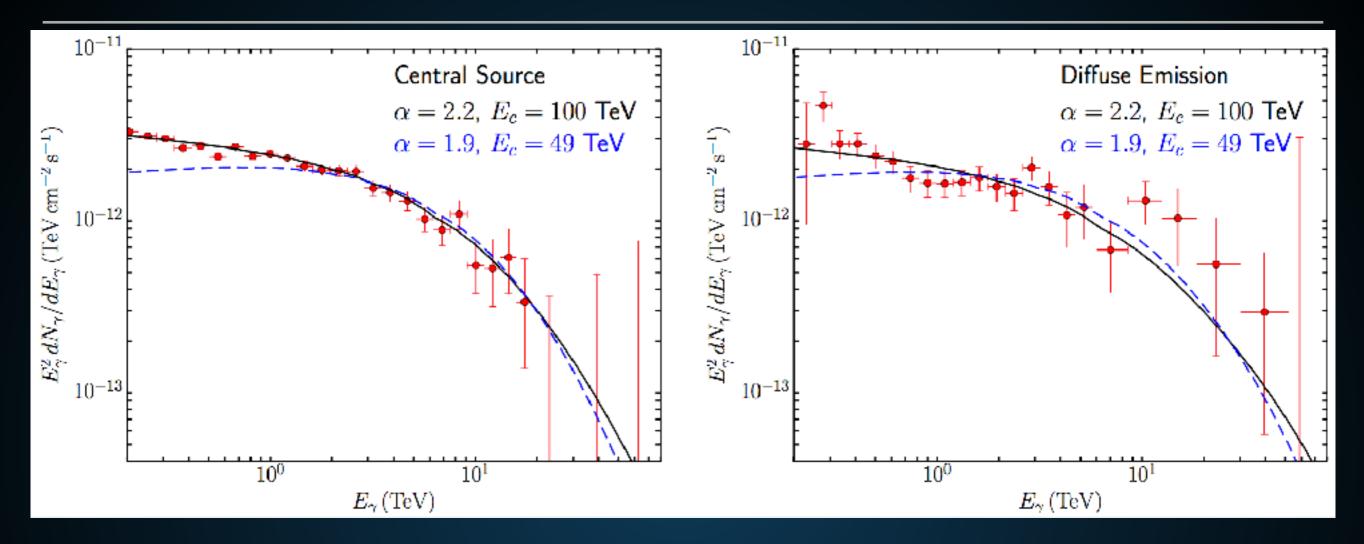

 HAWC sources are potential IceCube neutrino sources.

Spectral measurements of HAWC sources are imperative to calculating the expected neutrino flux.




Here we produce an analysis taking into account a 20% uncertainty in total flux, as well as spectral uncertainty due to an exponential cutoff.

- Use Geminga as a template to calculate
 TeV halo intensity.
- Use Geminga spectrum with complete (diffuse) cooling.
- Hadronic background from Galprop models tuned to Fermi-LAT emission.


TeV halos naturally explain the intensity and spectrum of the TeV excess.

- If these sources are hadronic, their stacked neutrino flux is detectable in current IceCube data.
- Alternatively, can place a strong constraint on the hadronic fraction of the brightest HAWC sources.

TEV HALOS PRODUCE THE PEVATRON SPECTRUM

- The TeV halo spectrum from Geminga naturally reproduces the HESS observations.
- Slightly softer spectra preferred.
 - Some evidence that Geminga spectrum is particularly hard.
 - Hadronic diffuse background contamination?

TWO DIFFERENT SOURCES OF INFORMATION

- This provides us two ways to learn about cosmic rays:
 - Investigating the cosmic-rays that directly hit satellites on Earth
 - Can directly detect cosmic-ray species
 - Only a local measurement
 - Solar Modulation
 - Investigating the gamma-ray signal from cosmic-ray interactions
 - Can understand propagation near sources
 - Don't directly know the cosmic-ray species, or even if the gamma-ray is galactic
 - Line of sight