TIM LINDEN THE RISE OF THE LEPTONS PULSAR EMISSION DOMINATES THE TEV GAMMA-RAY SKY

TeVPA 2017!

August 8, 2017

ASTROPARTICLE PHYSICS

TIM LINDEN THE RISE OF THE LEPTONS PULSAR EMISSION DOMINATES THE TEV GAMMA-RAY SKY

WITH: KATIE AUCHETTL, BEN BUCKMAN, JOSEPH BRAMANTE, ILIAS CHOLIS, KE FANG, DAN HOOPER, SHIRLEY LI

A GALAXY DOMINATED BY PROTONS

-0.2

 10^{3}

 10^{4}

 E_{γ} [MeV]

 10^{5}

Gamma-Rays

A NEW PICTURE

In this talk, I will instead argue that electrons and positrons produced by pulsars dominate the Milky Way's energetics at TeV energies:

1.) Pulsars are responsible for the rising positron fraction observed by PAMELA/AMS-02 (Hooper et al (1702.08436); see talk by Dan Hooper Wednesday, Macedonian Room, 3PM).

2.) Pulsars produce the majority of the bright TeV sources observed by CTA/HAWC/HESS etc. (Linden et al. (1703.09704); this talk).

3.) Pulsars produce the majority of the TeV gamma-ray emission observed from the Milky Way (Hooper et al. (1705.09293), Linden & Buckman (1707.01905); alluded to here).

Pulsars as high-energy particle accelerators

PULSARS AS ASTROPHYSICAL ACCELERATORS

Rotational Kinetic Energy of the neutron star is the <u>ultimate power source</u> of all emission in this problem.

PHYSICS HAPPENS

Outside the immediate pulsar magnetosphere, a number of forces are at work:

- Synchrotron/ICS cooling
- Reacceleration
- Termination Shocks

1611.03496

LOW-ENERGY OBSERVATIONS OF PULSAR WIND NEBULAE

astro-ph/0202232

- Extent of radio and X-Ray PWN is approximately 1 pc.
- Termination shock produced when ISM energy density overwhelms and stops the relativistic pulsar wind.

$$\begin{split} R_{\rm PWN} \simeq 1.5 \left(\frac{\dot{E}}{10^{35}\,{\rm erg/s}} \right)^{1/2} \times \\ \left(\frac{n_{\rm gas}}{1\,{\rm cm}^{-3}} \right)^{-1/2} \left(\frac{v}{100\,{\rm km/s}} \right)^{-3/2} {\rm pc} \end{split}$$

NOTE: The radial extent of PWN is explained by a known physical mechanism.

TEV OBSERVATIONS OF PULSARS

 Milagro and HAWC observe very extended emission from Geminga and Monogem (~2°)

Corresponds to ~10 pc - three orders of magnitude larger in volume than the PWN.

Opposite energy dependence older pulsars have larger TeV emission features.

HESS OBSERVATIONS OF PULSAR WIND NEBULAE

Table 1 HGPS	able 1 HGPS sources considered as firmly identified pulsar wind nebulae in this paper.											
HGPS name	ATNF name	Canonical name	$\lg \dot{E}$	$ au_{\mathbf{c}}$	d	PSR offset	Г	$R_{\rm PWN}$	$L_{1-10 \text{ TeV}}$			
				(kyr)	(kpc)	(pc)		(pc)	$(10^{33}{ m ergs^{-1}})$			
$J1813 - 178^{[1]}$	J1813 - 1749		37.75	5.60	4.70	< 2	2.07 ± 0.05	4.0 ± 0.3	19.0 ± 1.5			
J1833-105	J1833 - 1034	$G21.5 - 0.9^{[2]}$	37.53	4.85	4.10	< 2	2.42 ± 0.19	< 4	2.6 ± 0.5			
J1514-591	B1509-58	$MSH \ 15 - 52^{[3]}$	37.23	1.56	4.40	< 4	2.26 ± 0.03	11.1 ± 2.0	52.1 ± 1.8			
J1930+188	J1930 + 1852	$G54.1+0.3^{[4]}$	37.08	2.89	7.00	< 10	2.6 ± 0.3	< 9	5.5 ± 1.8			
J1420-607	J1420 - 6048	Kookaburra (K2) ^[5]	37.00	13.0	5.61	5.1 ± 1.2	2.20 ± 0.05	7.9 ± 0.6	44 ± 3			
J1849-000	J1849 - 0001	$IGR J18490-0000^{[6]}$	36.99	42.9	7.00	< 10	1.97 ± 0.09	11.0 ± 1.9	12 ± 2			
J1846 - 029	J1846 - 0258	Kes 75 ^[2]	36.91	0.728	5.80	< 2	$\textbf{2.41} \pm \textbf{0.09}$	< 3	6.0 ± 0.7			
J0835 - 455	B0833 - 45	Vela X ^[7]	36.84	11. 3	0.280	2.37 ± 0.18	1.89 ± 0.03	2.9 ± 0.3	$0.83 \pm 0.11^{*}$			
$J1837 - 069^{[8]}$	J1838 - 0655		36.74	22.7	6.60	17 ± 3	2.54 ± 0.04	41 ± 4	204 ± 8			
J1418-609	J1418 - 6058	Kookaburra (Rabbit) ^[5]	36.69	10.3	5.00	7.3 ± 1.5	2.26 ± 0.05	9.4 ± 0.9	31 ± 3			
J1356—645 ^[9]	J1357 - 6429		36.49	7.31	2.50	5.5 ± 1.4	2.20 ± 0.08	10.1 ± 0.9	14.7 ± 1.4			
$J1825 - 137^{[10]}$	B1823-13		36.45	21.4	3.93	33 ± 6	2.38 ± 0.03	32 ± 2	116 ± 4			
J1119-614	J1119-6127	$G292.2 - 0.5^{[11]}$	36.36	1.61	8.40	< 11	2.64 ± 0.12	14 ± 2	23 ± 4			
$J1303 - 631^{[12]}$	J1301 - 6305		36.23	11.0	6.65	20.5 ± 1.8	2.33 ± 0.02	20.6 ± 1.7	96 ± 5			

- HESS finds a large population of extended "TeV PWN"
- NOTE: The radial extent of this TeV emission is NOT explained by a known physical mechanism.

Extended TeV emission appears to be a generic feature of pulsars.

We rename these objects TeV halos.

Implication I:

Most TeV gamma-ray sources are TeV halos.

HESS SOURCES COINCIDENT WITH KNOWN PULSARS

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (×10 ⁻¹⁵)	Flux (×10 ⁻¹⁵)	Ratio	Extension	Extension	(kyr)	Overlap
J0700+143	B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0631+169	J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1912+099	J1913+1011	4.61	0.3 4°	27.36 pc	13.0	36.6	0.36	0.11°	0.7°	169	0.30
J2031+415	J2032+4127	1.70	0.11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-098	J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006

5 / 39 sources in the 2HWC catalog are correlated with bright, middle-aged (100 – 400 kyr) pulsars.

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (×10 ⁻¹⁵)	Flux (×10 ⁻¹⁵)	Ratio	Extension	Extension	(kyr)	Overlap
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9°	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08

12 others with young pulsars (2.36 chance overlaps)

Young pulsars may be contaminated by SNR.

TEV HALOS: THE FIRST ORDER MODEL

$$\phi_{\text{TeV halo}} = \left(\frac{\dot{E}_{\text{psr}}}{\dot{E}_{\text{Geminga}}}\right) \left(\frac{d_{\text{Geminga}}^2}{d_{\text{psr}}^2}\right) \phi_{\text{Geminga}}$$
$$\theta_{\text{TeV halo}} = \left(\frac{d_{\text{Geminga}}}{d_{\text{psr}}}\right) \theta_{\text{Geminga}}$$

- Assume that Geminga is a model for TeV halos, and every similar system is equivalently efficient at converting spin-down power to TeV gamma-ray emission.
- Can then calculate the TeV flux and extension of every TeV halo based on its spin-down power, and the observations of Geminga.
- Note: Using Monogem would increases fluxes by nearly a factor of 2.

STEP I: TEV HALOS ARE A GENERIC FEATURE OF PULSARS

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s^{-1})	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	—
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	—
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	_
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	—
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	
B0540+23	23.48	1.56	253	4.1e34	1.4e33	—

The five pulsars associated with TeV emission are among the seven brightest sources.

Hints that "missing sources" are coincident with nonstatistically significant TeV excesses.

HAWC SENSITIVITY AFTER 10 YEARS

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s^{-1})	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	—
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	—
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	_
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	
B0540+23	23.48	1.56	253	4.1e34	1.4e33	—

HAWC will eventually reach a flux sensitivity of 0.02 Geminga

Will observe

- TeV halos from a dozen middle-aged ATNF pulsars.
- TeV halos from ~40 additional young pulsars.

Maybe HAWC is seeing ~20 TeV halos.

More than 2600 pulsars are already detected in radio

Tauris and Manchester (1998) calculated the beaming angle from a population of young and middle-aged pulsars.

$$f = \left[1.1 \left(\log_{10} \left(\frac{\tau}{100 \text{ Myr}}\right)\right)^2 + 15\right]\%$$

This varies between 15-30%.

1/f pulsars are unseen in radio surveys.

MISSING TEV HALOS

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (×10 ⁻¹⁵)	Flux (×10 ⁻¹⁵)	Ratio	Extension	Extension	(kyr)	Overlap
J0700+143	B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0631+169	J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1912+099	J1913+1011	4.61	0.34°	27.36 pc	13.0	36.6	0.36	0.11°	0.7°	169	0.30
J2031+415	J2032+4127	1.70	0.11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-098	J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (×10 ⁻¹⁵)	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	(kyr)	Overlap
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9°	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08

The beaming fractions predicts that 56⁺¹⁵₋₁₁ TeV halos are currently observed by HAWC.

- However, only 39 total HAWC sources
- Chance overlaps, SNR contamination must be taken into account.
- But most unassociated HAWC sources <u>must</u> be TeV halos.

EVENTUAL TEV HALO DETECTIONS

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s^{-1})	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	
B0540+23	23.48	1.56	253	4.1e34	1.4e33	

10 year HAWC observations should detect 37⁺¹⁷₋₁₃ TeV halos surrounding middle-aged pulsars.

These numbers correspond to most of the TeV sources detectable by HAWC.

Most of these sources not detected at other wavelengths.

HESS/VERITAS DETECTIONS

Targeted ACTs are sensitive to the flux from TeV halos.

- ACTs are not sensitive to sources extended >0.5°.
- Large parameter space available only to HAWC.

CONFIRMING TEV HALOS

Several Methods to confirm TeV halo detections:

X-Ray halos

X-Ray PWN

A POSSIBLE DETECTION

Possible Detection! (G327-1.1) Young Pulsar (17.4 kyr) Two PWN Diffuse PWN has significantly softer spectrum

	Region	Area (arcsec ²)	Cts (1000)	$\stackrel{\rm N_{H}}{_{(10^{22}\rm cm^{-2})}}$	Photon Index	$\begin{array}{c} \text{Amplitude} \\ (10^{-4}) \end{array}$	kT (keV)	$(10^{12} \mathrm{scm}^{-3})$	Norm. (10 ⁻³)	F ₁ (10 ⁻	F_2^{-12})	$\frac{\text{Red.}}{\chi^2}$
1	Compact Source	84.657	6.34	$1.93\substack{+0.08\\-0.08}$	$1.61\substack{+0.08\\-0.07}$	$1.05\substack{+0.11\\-0.10}$				0.45		0.80
2	Cometary PWN	971.22	7.75	1.93	$1.62^{+0.08}_{-0.07}$	$1.47^{+0.16}_{-0.14}$	•••			1.09	•••	•••
3	Trail East	537.42	2.13	1.93	$1.84^{+0.12}_{-0.12}$	$0.44^{+0.07}_{-0.06}$	•••			0.27	•••	•••
4	Trail West	766.56	3.12	1.93	$1.80^{+0.11}_{-0.11}$	$0.61\substack{+0.09\\-0.08}$				0.39		
5	Trail 1	424.45	1.98	1.93	$1.76^{+0.12}_{-0.12}$	$0.39^{+0.05}_{-0.05}$				0.26		
6	Trail 2	588.19	2.13	1.93	$1.95^{+0.11}_{-0.11}$	$0.49^{+0.07}_{-0.06}$				0.28		
7	Trail 3	994.92	2.99	1.93	$2.09^{+0.10}_{-0.10}$	$0.78^{+0.09}_{-0.08}$				0.42		
8	Trail 4	839.48	2.38	1.93	$2.28\substack{+0.12\\-0.12}$	$0.74\substack{+0.09\\-0.09}$				0.37		
9	Prong East	828.58	1.66	1.93	$1.72^{+0.14}_{-0.14}$	$0.30^{+0.06}_{-0.05}$				0.27		•••
10	Prong West	971.22	2.06	1.93	$1.85^{+0.14}_{-0.14}$	$0.44^{+0.08}_{-0.07}$				1.09		
11	Diffuse PWN*	20007	27.7	1.93	$2.11_{-0.05}^{+0.04}$	$6.91^{+0.37}_{-0.74}$	$0.23_{-0.05}^{+0.14}$	$0.21^{\pm 0.88}_{-0.16}$	$6.0^{+16}_{-4.0}$	3.68	17.7	0.82
12	Relic PWN*	26787	17.2	1.93	$2.58\substack{+0.07\\-0.10}$	$6.51\substack{+0.53\\-0.71}$	0.23	0.21	$6.9^{+18}_{-5.5}$	3.14	20.3	
4.0		0.4 4 8 0	1 00	e e e ± 0 23	$a = a = \pm 0.20$	1 co ±0.52				0.04		

Implication II:

Most TeV gamma-rays are leptonic

TOTAL HIGH-ENERGY EMISSION FROM SNR AND PULSAR

 At high energies, leptonic gamma-rays become dominant.

There are many TeV halos in the Milky Way

Dim TeV halos will be observed as a new diffuse gamma-ray emission component.

What about dim TeV halos?

Linden et al. (TBS)

IMPLICATION IIIB: THE TEV EXCESS

- Use a generic model for pulsar luminosities:
 - $B_0 = 10^{12.5} \text{ G} (10^{0.3} \text{ G})$
 - $P_0 = 0.3 \text{ s} (0.15 \text{ s})$
- Spindown Timescale of ~10⁴ yr (depends on B₀)
- Galprop model for supernova distances
- >ຍ ມີ ກີ 10^{−12} Integrated 7 TeV Flux Number of Sources 10^{4} ÷. ä dex^{-1}) <u>a</u> 103 10^{-13} S s_1 Geminga Flux Υ ۳ ۲ 10^{-14} 10² = dN/dlog(F) (TeV cm dN/dlog(F) HAWC 10 sensitivitv 10-15 10^{1} 10^{-16} 10^{0} 10^{-18} 10^{-14} 10 10^{-16} 10^{-15} 10 Differential Flux at 7 TeV (TeV⁻¹ cm⁻² s⁻¹)

- Naturally expect O(1) source as bright as Geminga
- HAWC eventually observes O(50) sources.

IMPLICATION IIIB: THE TEV EXCESS

 Use Geminga as a template to calculate TeV halo intensity.

- Use Geminga spectrum with complete (diffuse) cooling.
- Hadronic background from Galprop models tuned to Fermi-LAT emission.

TeV halos naturally explain the intensity and spectrum of the TeV excess.

TeV observations open up a new window into understanding Milky Way pulsars.

Early indications:

- TeV halos produce most of the TeV sources observed by ACTs and HAWC
- TeV halos dominate the diffuse TeV emission in our galaxy.

- Additional implications:
 - Young pulsar braking index

Galactic cosmic-ray diffusion

Source of IceCube neutrinos