Fundamental Physics with TeV Gamma Rays

Tim Linden

The Waning of the WIMP: Endgame?

Giorgio Arcadi^{a,1,2}, David Cabo-Almeida^{b,1,2,3}, Maíra Dutra^{c,4,5}, Pradipta Ghosh^{d,6}, Manfred Lindner^{e,7}, Yann Mambrini^{f,8}, Jacinto P. Neto^{g,1,9,10}, Mathias Pierre^{h,11}, Stefano Profumo^{i,12,13}, Farinaldo S. Queiroz^{j,9,10,14}

 ¹ Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Universita degli Studi di Messina, Via Ferdinando Stagno d'Alcontres 31, I-98166 Messina, Italy
 ²INFN Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy
 ³Departament de Física Quàntica i Astrofísica, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain

⁴Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States of America ⁵NASA Postdoctoral Program Fellow

⁶Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
 ⁷Max Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
 ⁸Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
 ⁹Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brasil
 ¹⁰International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal-RN 59078-970
 Brazil

¹¹Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
 ¹²Department of Physics, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95060, United States of America
 ¹³Santa Cruz Institute for Particle Physics, Santa Cruz, 1156 High St, Santa Cruz, CA 95060, United States of America
 ¹⁴Millennium Institute for Subatomic Physics at the High-Energy Frontier (SAPHIR) of ANID, Fernández Concha 700, Santiago, Chile Received: date / Accepted: date

Neutrino Fog

Dark Matter Mass (TeV)

1204 1000 Energy (GeV)

Thermal Cross-Section Steigman et al. 2012 1204.3622

H.E.S.S. Reticulum II 2020 H.E.S.S. Collaboration 2008.00688

Fermi-LAT 2023 McDaniel et al. 2309.04982 Thermal Cross-Section Steigman et al. 2012

Steigman et al. 2012 1204.3622

104

1000 Energy (GeV)

- These conclusions are strengthened when specific models are considered.
- The TeV frontier is the new home for WIMP phenomenology.

Arcadi et al. (2024; 2403.15860)

- These conclusions are strengthened when specific models are considered.
- The TeV frontier is the new home for WIMP phenomenology.

Arcadi et al. (2024; 2403.15860)

- These conclusions are strengthened when specific models are considered.
- The TeV frontier is the new home for WIMP phenomenology.

Arcadi et al. (2024; 2403.15860)

• This is also true within the context of pMSSM models. The regions where the lightest supersymmetric particle is heavy are primarily probed by CTA.

• Note: Fermi-LAT GeV searches are barely on this plot — <u>CTA is a unique DM detection</u> instrument.

Bayesian Analysis

- Strong limits on GeV dark matter do two things:
 - Increase likelihood that dark matter is not a WIMP
 - Increase likelihood that dark matter is a TeV WIMP

Dark matter annihilation

Stars in the Galactic bulge

Galactic Center Excess

extragalactic gamma-ray background

Cygnus X

interstellar emission from the galactic disk

Interstellar emission from the Orion molecular clouds

Galactic Center Excess

Fermi-LAT Collaboration (2017; 1704.03910)

Gamma-ray emissions

X-ray emissions

Milky Way

Fermi Bubbles

50,000 light-years

Sun

Fermi Bubbles

Galactic Center Excess

- Relevance of TeV Observations:
 - Potential High-Energy Tail in the GeV Excess
 - Understanding Diffuse Emission Models
 - Modeling the Fermi Bubbles
 - Star-Formation in the Galactic Center

The Moon (same scale)

PSR B0656+14

О TevHalos

Geminga

MSP halos and the GCE

- Potential evidence that some MSPs host TeV halos
 - Important from evolutionary perspective because SNR energetics not important
 - Could produce large population of TeV halos in the Galactic Center

• For GCE - TeV halo nature is not as important as the principle that MSPs also accelerate ~10% of spin down power into e+e- pairs.

LHAASO Collaboration (2023; 2305.17030)

1LHAASO J0216+4237u	0.33	ATNF PSR J0218+4232
	0.33	4FGL J0218.1+4232

 $\dot{E} = 2.44 \times 10^{35} \text{ erg s}^{-1}, \tau_c = 476000.0 \text{ kyr}, d = 3.15 \text{ kpc}$ PSR J0218+4232;MSP;

Dwarf Searches

 Population of dwarf spheroidal galaxies have set strong limits on GeV dark matter annihilation.

McDaniel et al. (2023; 2311.04982)

Dwarf Searches

•

McDaniel et al. (2023; 2311.04982)

$$\mathcal{L}_J(J) = \frac{1}{\ln(10)\sqrt{2\pi\sigma_J}J_{obs}}$$
$$\times \exp\left[-\left(\frac{\log_{10}(J) - \log_{10}(J_o)}{\sqrt{2}\sigma_J}\right)\right]$$

TeV Dwarf Searches

- Optimal strategy in the TeV era will change
 - Target observations add a cost to observing many dwarfs
 - LSST and updated spectroscopic measurements will decrease J-factor uncertainties
 - Increasing possibility of finding "extraordinary" high J-factor dwarf

Fortuitous Dwarfs? Sagittarius

Venville et al. (2023; 2308.13180)

Fortuitous Dwarfs?

galaxy.

• Rotation curve data, combined with proximity, indicate this may be the highest J-factor system in the

Fortuitous Dwarfs?

- Recently, a candidate dwarf Ursa Major III was discovered in UNIONS data.
- galaxy.

Crnogorčević & Linden (2023; 2311.10147)

• Rotation curve data, combined with proximity, indicate this may be the highest J-factor system in the

TeV-Lines from WIMP Dark Matter

- Can also search for dark matter spectral features!
 - Most likely target $\chi\chi \to \gamma\gamma$
 - At TeV energies, this is always accompanied by $\chi\chi \rightarrow \gamma Z$, which has a similar energy above ~300 GeV.
 - In general, cross-section is suppressed by $lpha^2$, but models with enhanced lines are possible, especially at resonances (e.g., Sommerfeld effect)

MAGIC Collaboration (2022; 2212.10527)

Dark Matter

Caro (2023)

Dark Matter

Pulsars

- Pulsar Cooling Produces Sharp Lines:
 - Electrons at higher energy cool faster due to inverse-Compton scattering.
 - Pile-Up of High Energy Electrons at a specific energy that is related to the pulsar age.

- This story is <u>entirely wrong</u>.
- Electrons don't cool continuously, and an electron doesn't encounter the entire interstellar radiation field.
- Electrons encounter a small number of random photons at random angles, and lose random amounts of energy.
- Can't cool to a single line!

≥ 1200 – ປັ nergy 1000electron 800-600-Final 400

John & Linden (2022; 2206.04699)

Pulsars don't produce lines!

Dark Matter lines are sharper!

Electron Anisotropies?

- Measuring electron fluxes with ACTs is difficult!
- Why? Because hadronic foregrounds dominate and hadronic/leptonic separation has large systematic errors.
- Searching for anisotropies may sound impossible?

$$\Delta = \frac{3}{2c} \frac{d}{T} \frac{(1-\delta)E/E_{\text{loss}}}{1-(1-E/E_{\text{loss}})^{1-\delta}} \frac{N_{\text{psr}}(E)}{N_{\text{tot}}(E)}$$

- However Hadronic background is known to be isotropic! It is a statistical (not systematic) error.
- CTA will observe many many hadrons, making the uncertainty small.

Bayesian Analysis

- Strong limits on GeV dark matter do two things:
 - Increase likelihood that dark matter is not a WIMP
 - Increase likelihood that dark matter is a TeV WIMP

Why TeV Gamma-Rays?

- Why TeV Photons?
- While the universe is transparent to GeV photons, TeV photons can upscatter ambient light and convert to e+e-pairs.
- This produces a cascade that attenuates the TeV photon flux.

• Light through a wall experiment.

De Angelis et al. 2011 (1106.1132)

Why nev Axions?

- Photon to Axion Conversion kinematically forbidden in a vacuum.
- Photon must acquire an effective mass

• For intergalactic magnetic field strengths and electron densities, this is order of 1-1000 neV.

• Strong link between divergent energy scales - TeV gamma-rays uniquely tell us about neV axions!

$$\left(rac{4\pilpha n_e}{m_e}
ight)^{1/2}$$

Axion Searches

Axion Searches

- ALPs significantly increase the transparency of the universe.
- Biggest Uncertainties:
 - Gap between Fermi GeV observations and HAWC/HESS TeV observations
 - Variability in blazers makes analyses with multiple instruments difficult
 - Constraints will significantly improve with dedicated GeV-TeV instrument

Energy [TeV]

Jacobsen, Linden, Freese (2022; 2203.04332)

Axion Searches

- ALPs significantly increase the transparency of the universe.
- Can also use HAWC/Tibet data independently to look for TeV sources.
- High absorption near 1 PeV opens the avenue to using Galactic observations.
- Constraints at hundred-TeV energies extend to higher ALP masses, but sensitivity of survey telescopes lies below targeted ACTS

To be successful you don't need to do extraordinary things, you just need to do ordinary things extraordinarily well.

Jim Rohn

G quotefancy

NFW Profile (Mass of Milky Way)

Thermal Cross-Section (Early Universe)

Dark Matter Mass (?)

Annihilation Final State (?)

Gamma-Ray Flux within 10 $^\circ\,$ of Galactic Center

NFW Profile (Mass of Milky Way) Thermal Cross-Section (Early Universe) Dark Matter Mass (?)

Annihilation Final State (?)

Milky Way Star-Formation Rate (Galactic Dynamics) Diffusion Constant in Galactic Center (Hydrodyanmics) Activity of Supermassive Blackhole (?)

SMBH Accretion Efficiency (Magnetohydrodynamics) Blazar Acceleration Mechanisms (Leptonic? Hadronic?) Radio Galaxy Emission Models Star-Formation Rates in Starburst Galaxies

 10^{-7}

SMBH Accretion Efficiency (Magnetohydrodynamics)Blazar Acceleration Mechanisms (Leptonic? Hadronic?)Radio Galaxy Emission ModelsStar-Formation Rates in Starburst Galaxies

dSph Proximity

Substructure Models

Milky Way Merger History

•

.

 10^{-7}

Local Dark Matter Density

Thermal Cross-Section (Early Universe)

Dark Matter Mass (?)

Convection of Annihilation Products from GC (Winds?)

Local Dark Matter Density Thermal Cross-Section (Early Universe) Hadronic Component of Dark Matter Final State Convection of Annihilation Products from GC (Winds?)

Local Gas Density

Local Supernova Rate

Antiproton Flux at Earth

Local Dark Matter Density Thermal Cross-Section (Early Universe) Leptonic Component of Dark Matter Final State

Convection of Annihilation Products from GC (Winds?)

Local Dark Matter Density Thermal Cross-Section (Early Universe) Leptonic Component of Dark Matter Final State Convection of Annihilation Products from GC (Winds?)

Pulsar Birth Rate

e⁺e⁻ Acceleration Efficiency in Pulsar Magnetospheres

Extragalactic Dark Matter Density

Thermal Cross-Section (Early Universe)

e+e- Energy Fraction in Dark Matter Annihilation

Intergalactic Magnetic Fields

Extragalactic Dark Matter Density Thermal Cross-Section (Early Universe) e+e- Energy Fraction in Dark Matter Annihilation Intergalactic Magnetic Fields

Radio Luminosity in Starbursts and AGN e+e- Reacceleration in Cluster Mergers Redshift Dependence of Signal vs. CMB

Fundamentals of Diffusion

Fundamentals of Diffusion

Bao et al. (2021; 2107.07395)

- suppressed near energetic pulsars.
- Models predict difference is largest near 10 TeV TeV sky is much richer than GeV sky!

Evoli, Linden, Morlino (2018; 1807.09263)

Separating Leptonic and Hadronic Emission

Widmark, Korsmeier, Linden (2022; 2208.11704)

Separating Leptonic and Hadronic Emission

- By observing gamma-rays in the Milky Way, we can constrain the gas density within compact clouds.
- New method for understanding the dust to gas ratio of galaxies.
- Similar accuracy to radio measurements, with independent uncertainties.

Conclusions

EXCESS.

few optimal dwarf targets.

100 TeV.

• Baryons will continue to be the largest problem in dark matter searches — understanding astrophysical signatures better is the key to making any real progress.

• CTA will have an important role in understanding excesses from the Fermi-LAT era, such as the GeV

• The search for dark matter from dwarf spheroidal galaxies will become increasingly focused on a

• Searches for axions require an instrument with consistent, deep images spanning from ~100 GeV to

