There is a large population of NRFs around the galactic center

- a.) Bright in Radio
- b.) Perpendicular to Galactic Plane
- c.) Long and thin
- d.) Sometimes tangled
- e.) Hard polarized spectrum
 - a. Polarization => synchrotron
 - b. Polarization >= 60% in multiple filaments

What does polarized synchrotron emission imply?

For a single electron in a constant B-field, synchrotron will be entirely polarized.

a.) Power law lepton spectrum

$$p_0 = (3\gamma + 3) / (3\gamma + 7)$$
 (Le Roux, 1961)

- b.) Faraday Rotation rotation of light in magnetic field
- c.) Random Magnetic Fields $P \sim p_0 * B_{ord}^2 / B_{tot}^2$
 - = for power laws $\gamma = 1$
- d.) These depolarizing forces add so observations of polarization put a lower limit on magnetic field order

An electron entering a region with an ordered magnetic field will exit the region on timescale equivalent to the gyroradius

$$R_g = 1.1 \times 10^{-7} \text{ pc (E / 10 GeV) (100 } \mu\text{G / B)}$$

= 3 x 10⁸ m

$$T_g \sim 1 \text{ sec}$$

Even in the case of only $\sim 1\%$ ordered magnetic field, the rejection time for GeV particles is ~ 1000 seconds

$$T_g \ll T_{sync}$$

Result: Polarization => Magnetic Field Order => Electrons inside the NRFs are not externally produced NRFs have very hard synchrotron spectra with very fast turnover:

Radio Arc has
$$Sv \sim +0.3$$

Where $Sv = erg / cm^2 / s / Hz$

Northern Thread:

$$Sv \sim -0.5$$
 from 1.4 to 4.8 GHz

$$Sv \sim -2.0$$
 from 4.8 to 8.3 GHz

For a power law electrons we have:

$$p = 2\alpha - 1$$

where α is the synchrotron energy spectrum and p is the electron injection spectrum.

Supernova remnants have p \sim 2.4 so α < -0.6 – which is at odds with observation.

Monoenergetic Electron Spectrum

Lesch, 1988 postulated a monoenergetic electron spectrum

Necessary energy ~ 7 GeV!!

Spectrum of monoenergetic electron spectrum can replicate both the rising and rapidly falling synchrotron spectra observed

Previous Models:

Magnetic Reconnection regions form on edges of filamentary arcs:

Can explain both strong magnetic fields and particle acceleration (offset between synchrotron energy loss and energy gain)

BUT, several problems:

- 1.) Why is the electron injection spectra identical in all filaments?
- 2.) Acceleration may not be efficient enough to produce GeV particles in any case
- 3.) Intensity of electron acceleration may vary wildly

Dark Matter as an electron injector

Leptophilic dark matter candidates naturally produce a sharply peaked (non-power law) spectrum

We use 8 GeV DM (H&G) as a template

dn/dE between 0.0 and -0.5, with 2/3 of energy in a delta function at 8 GeV

Intensity of Electron Injection:

Unlike astrophysical scenarios, dark matter limits fine tuning for the total intensity of injected leptons

The dark matter injection spectrum can be written as:

$$\Phi_{DM} = 4.5 \times 10^{31} (8 \text{ GeV} / \text{M}_{DM})^2 (<\sigma v>/3x10^{26} \text{ cm}^3\text{s}^{-1})$$

 $(r / 100 \text{ pc})^{-2.5} (v / 1 \text{ pc})^3 \text{ ann } / \text{s}$

In order to calculate the total electron population, we multiply this by dn/dE and then also take into account the time in which the electrons are confined within the filaments.

However, this value is very uncertain – so we take an alternate route:

The synchrotron energy loss time for 8 GeV electrons is given by:

$$T = 6.6 \times 10^{12} (8 \text{ GeV} / \text{E}) (100 \mu\text{G} / \text{B})^2$$

We define a parameter τ which defines the ratio between the synchrotron energy loss time and the containment time for 8 GeV

Make correction E^{-0.33} in the containment time (Kolmogorov Spectrum)

Astrophysical mechanisms usually assume $\tau \sim 1$. We make a similar assumption for dark matter scenarios.

=> Diffusion constant $\sim 5 \times 10^{26} \text{ cm}^2\text{s}^{-1}$ Galactic avg. $\sim 5 \times 10^{28} \text{ cm}^2\text{s}^{-1}$

Tau controls two important parameters:

- a.) Synchrotron Exhaustion (electron spectrum)
- b.) Total intensity (percentage of total electron energy lost to synchrotron)
 - a. $\tau = 1$ corresponds to $\sim 48\%$

Explaining Different NRFs:

In order to explain the different spectra of NRFs, we must employ differences in the magnetic field strength and τ

Peak of Synchrotron spectrum ∼ B

Larger τ leads to softer synchrotron spectra

Galactic Trends

In dark matter scenario – the intensity of the electron injection varies as $r^{-2.5}$.

This trend should be observed in the synchrotron from NRFs as a function of their distance from galactic center (20 pc – 120 pc => 2 orders of magnitude)

There are many complicating factors (NRF magnetic fields, filament depths, confinement times – but the size of the correlation may yield interesting results in population studies.

One parameter we can control for is length:

- a.) Flux / length For complete confinement
- b.) Flux / length^2 For free propagation through filament
- c.) Flux / length^3 For diffusive propagation through filament

We scan distributions at 330 MHz and 1.4 GHz, and find opposite results.

DM naturally creates the right intensity for NRFs if $\tau \sim 1$ (can't go much higher, but could go much lower)

DM naturally creates a reasonable spectra (magnetic fields closely match equipartition results)

DM predicts the r⁻² correlation between galactic center distance and Flux

However, a few thorny issues:

Diffusion constant must be much lower in NRFs with low magnetic fields (a possible prediction of Alfven)

τ is a rather arbitrary parameter

Further observations necessary:

- Larger study of populations, including different frequencies can help isolate DM contribution
- 2.) Theoretical models of diffusion in ordered magnetic fields could provide bounds on τ