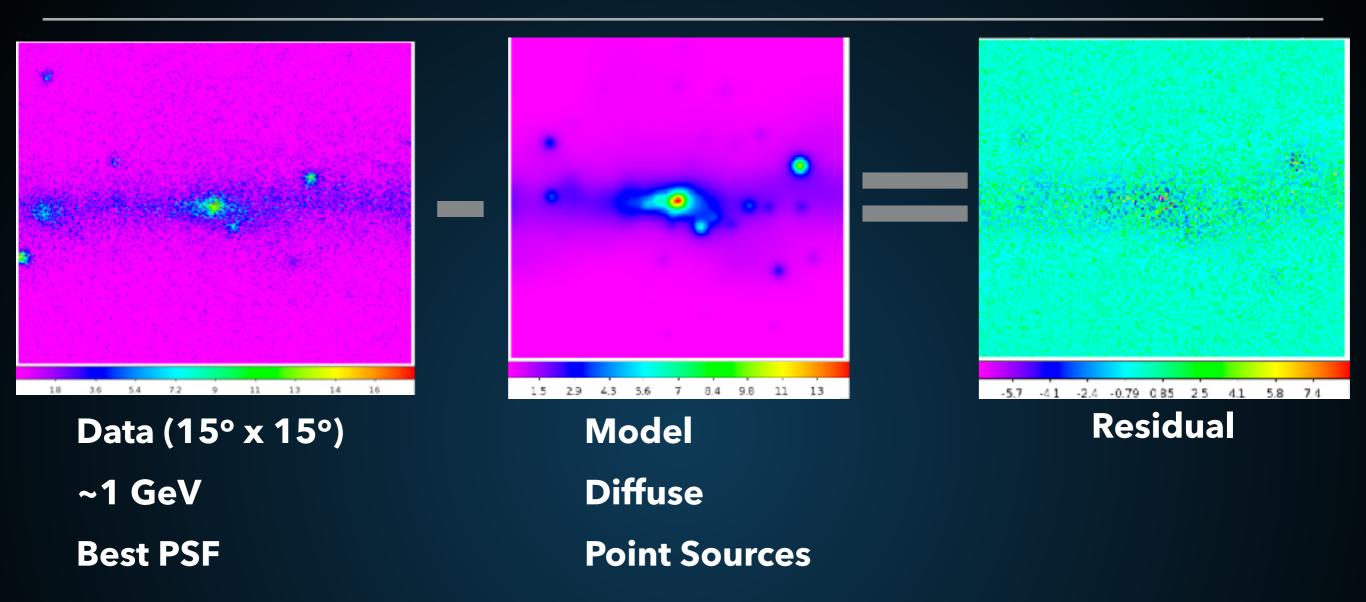
TIM LINDEN MODELING POPULATIONS OF DIM GAMMA-RAY POINT SOURCES


AstroStat Meeting

June 27, 2017

The Ohio State University

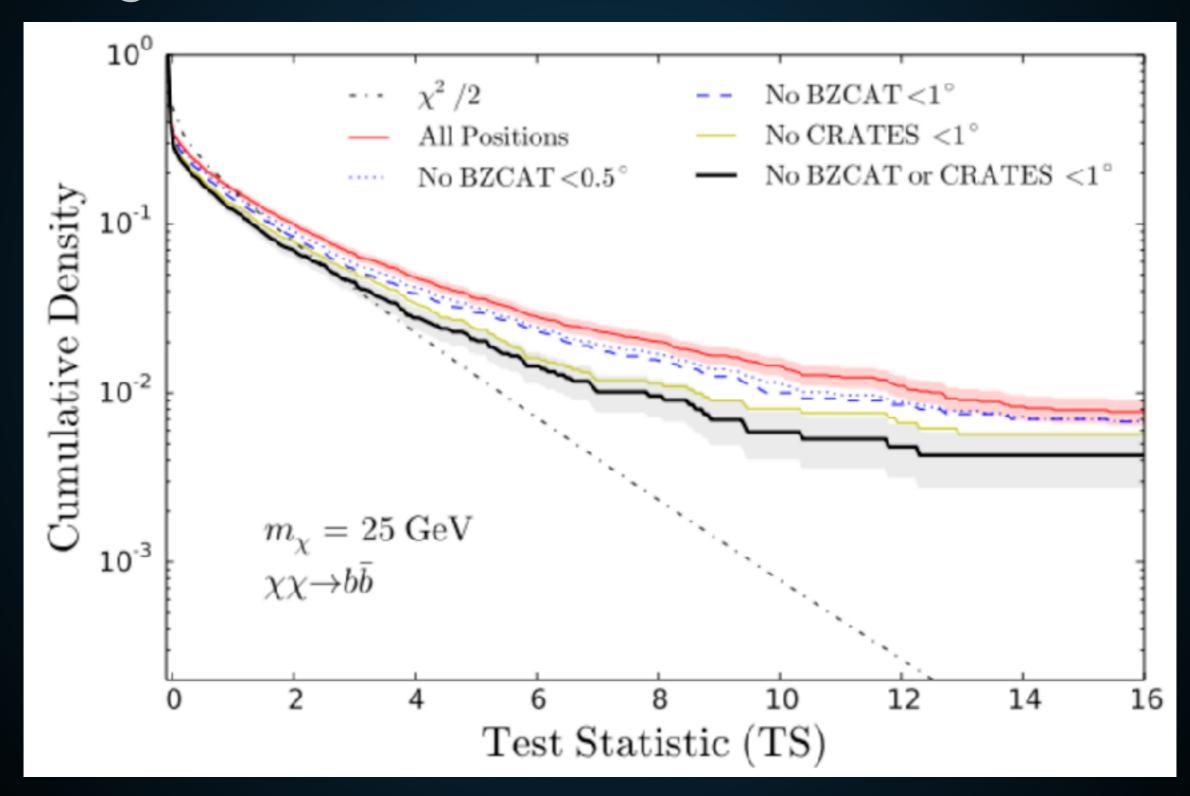
CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

GAMMA-RAY DATA ANALYSIS

Calculate the fit to the data by calculating the Poisson probability of observing X photons in each bin given the model.

Can calculate the improvement to the fit by adding additional point sources into the model.

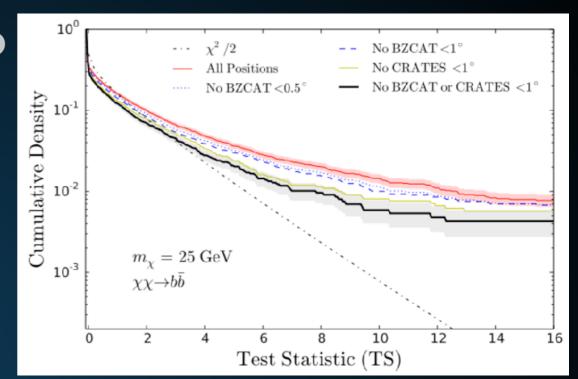
Advantages:


- Nearly equivalent coverage of the full sky.
- Universe nearly transparent to GeV gamma-rays

Disadvantages:

- Not much energy information
- Poor PSF (~1° PSF; ~0.1° localization of bright sources)

BACKGROUND MODELING ISSUES


Background fluctuations not Poisson Statistics:

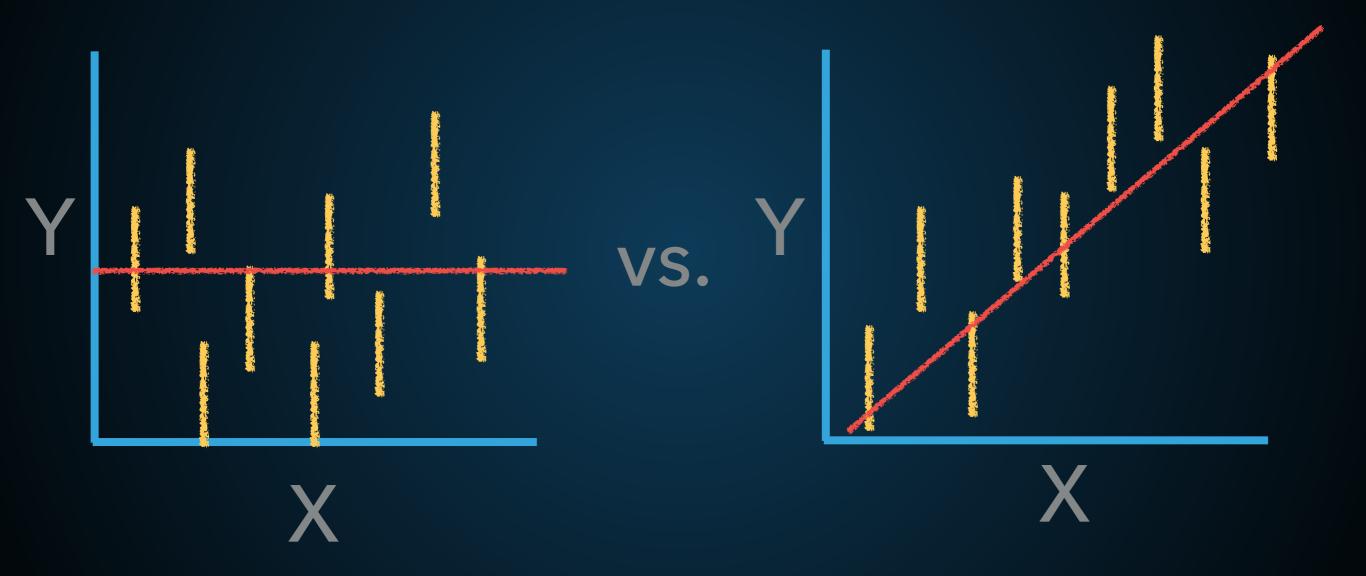
BACKGROUND MODELING ISSUES

Employ "blank sky locations" to characterize the background.

Accounts for known and unknown systematic issues and point source properties.

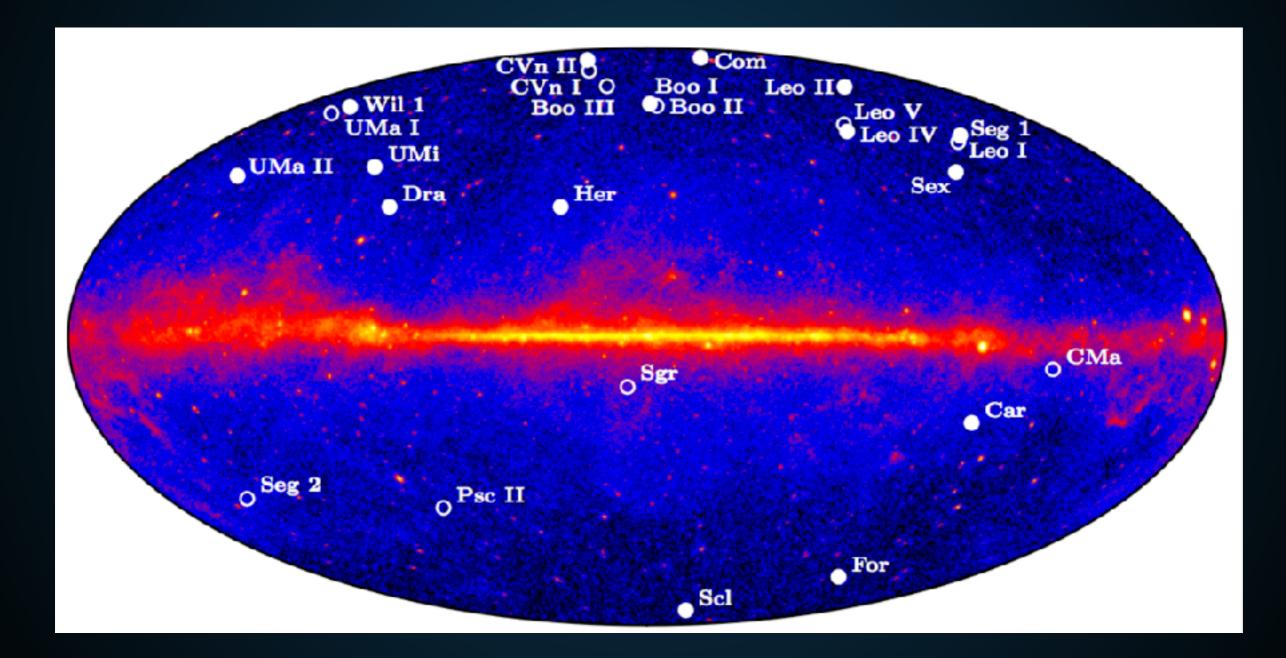
- Computationally intensive, hard to understand rare events.
- Background changes based on source model.
- Can have global changes in model e.g. galactic plane.

USING LOW ENERGY INFORMATION


Determine the gamma-ray luminosity of a population of point sources

- Advantages:
 - Know where sources are, and approximately how bright they should be (model dependent)

- Disadvantages:
 - Flux fluctuations in the background often larger than individual source fluxes.


USING LOW ENERGY INFORMATION

Determine the gamma-ray luminosity of a population of point sources

EXAMPLE - DWARF SPHEROIDAL GALAXIES

Dark Matter Annihilation in Dwarf Galaxies

EXAMPLE - DWARF SPHEROIDAL GALAXIES

Dark Matter Annihilation in Dwarf Galaxies

Normalization Factor

Dwarf Environment

<u>Common to all dwarfs</u>

Optical Observations

Want to test if it is non-zero. Have Uncertainties

Name	Distance	θ_{\max}	$\log_{10} J(\theta_{\max})$	$\log_{10} J(0.5^{\circ})$	$\log_{10} D(\theta_{\max})$	$\log_{10} D(0.5^{\circ})$
	[kpc]	[°]	$[\text{GeV}^2 \text{cm}^{-5}]$	$[\text{GeV}^2 \text{cm}^{-5}]$	$[{ m GeVcm^{-2}}]$	$[{ m GeVcm^{-2}}]$
Carina	105 ± 6	1.26	$18.03\substack{+0.34\\-0.34}$	$17.99\substack{+0.34\\-0.34}$	$18.37^{+0.17}_{-0.17}$	$17.98\substack{+0.34\\-0.34}$
Draco	76 ± 6	1.3	$18.92\substack{+0.25\\-0.25}$	$18.86^{+0.24}_{-0.24}$	$18.82\substack{+0.12\\-0.12}$	$18.39\substack{+0.25\\-0.25}$
Fornax	147 ± 12	2.61	$18.27\substack{+0.17\\-0.17}$	$18.15^{+0.16}_{-0.16}$	$19.04\substack{+0.09\\-0.09}$	$18.26\substack{+0.17\\-0.17}$
Leo I	254 ± 15	0.45	$17.80\substack{+0.28\\-0.28}$	$17.80^{+0.28}_{-0.28}$	$17.84_{-0.14}^{+0.14}$	$17.89\substack{+0.28\\-0.28}$
Leo II	233 ± 14	0.23	$17.41^{+0.25}_{-0.25}$	$17.44\substack{+0.25\\-0.25}$	$17.31^{+0.12}_{-0.12}$	$17.62\substack{+0.25\\-0.25}$
Sculptor	86 ± 6	1.94	$18.73\substack{+0.29\\-0.29}$	$18.65\substack{+0.29\\-0.29}$	$18.93^{+0.15}_{-0.15}$	$18.33^{+0.29}_{-0.29}$
Sextans	86 ± 4	1.7	$18.04\substack{+0.29\\-0.29}$	$17.87^{+0.29}_{-0.29}$	$18.76^{+0.15}_{-0.15}$	$18.07^{+0.29}_{-0.29}$
Unan Minon	76 ± 9	1.97	10.10 ± 0.24	$10.1 \pm +0.25$	10.04 ± 0.12	10 45+0.24

Nearby Star-Forming Galaxies

IRAS REVISED BRIGHT GALAXY SAMPLE — INTEGRATED FLUX DENSITIES AND LUMINOSITIES

Name		R.A. (J2	900) DKC	ŕ	b	HR	12	(19 m .	25	μm	60	μm	100	μm	ez	D	$D = -\log(L_{ m tir},L_{ m ir})$		н)	IG/AGN Names
Common (1)	IRAS (2)	hh: mi: a a . s (3)	(4)	с (5)	: (6)	(7)		зЈу SMF S}		anJy SMF (9)		nJy SMF 10)	Ј у (1	nJy SHF 1)	ka./s (12)	Ирс (13)	L_{\odot} (14)	L_{\odot} (15)	Rank (16)	(17)
NGC 0023 1 FO	0073+2538	00:09:55.1	+25:55:37	111.38	-36.01		0.66	38 RI	1.29	45 RI	9.03	46 UT	15.66	114 UT	4536	59.62	10.89	11.05	183	MRE 0545
NGC 0034 1 F00		00:11:08.6					6.35	32 UT	2.39	55 UT	17.05	45 UT	16.85	135 07	5931		11.34			VV8A0;MEB.0998
NCS-02-01-051/2 1 FO		00:14:54.5				5	$1.34 \\ 0.28$	- ER 34 NI	6.25 1.20	- RR 55 UT	77.00 7.48	– RR. 48 MI	174.09 9.66	- RR 138 um	125 8112	3.10^{S} 105.76		9.36 11.41		A R P356 V V352
NGC 0134 2 FOC						.,	2.35	48 EI	2.59	36 RT	22.65	53 RI	58.87	130 MT	1579			10.37		A MOD 27 X83
ESU 079-G003 2 FOO	0298-6431	00:32:02.0	-64:15:14	306.41	-52.74		0.42	8 RI	0.88	25 RI	7.05	38 RI	17.41	91 UT	2616		10.42	10.51	354	A M00 039 (643 % MD002
NGC 0150 1 FOC	0317-2804	00:34:16.2	-27:48:10	21.90	-86.13		0.66	40 EI	1.66	35 MI	9.66	56 MI	17.72	166 UT	1584	16.20^{N}	9.79	9.95	536	A M0.081_080 H
NGC 0157 1 FOC		00:34:46.0					1.61	35 EI	2.17	42 RT	17.93	48 EI	42.43	103 ИІ	1637			10.52		
ESU 350-IG038 2 FOC		00:36:52.0					0.52	19 EI	2.51	34 UT	6.88	41 ur	5.04	27 UT	6156		11.02			A 50 003 4 334
NGC 0174 1 F00	0345=2945	00:36:58.4	-29:28:45	355.64	-86.04		0.41	31 UT	1.27	34 UT	11.36	48 UT	19.77	145 OT	3569	47.28	10.79	10.90	234	A MOO 8 4-204
NGC 0224 2 F00	0400+4059 R	00:42:44.8	+41:15:13	121.18	-21.57	1	L63.23	- RR	107.71	- RR	536.18	- RR	2928.40	- RR	-300	0.79^{P}	9.33	9.39	600	
NGC 0232 1 F00	0402-2349	00:42:46.5	-23:33:31	93.72	-85.93	s	0.36	34 UT	1.28	39 RI	10.05	37 UT	17.14	94 UT	6047	79.23	11.19	11.30	115	VVS30 AM0040-284
NGC 0247 1 F00	0446=2101 R	00:47:05.0	-20:45:48	113.86	-83.56		0.14	53 UT	0.89	42 RZ	8.73	50 RZ	23.50	124 RZ	159	3.10^{2}		B.45		
NGC 0253 1 F00							41.04		154.67		967.81		1288.15	544 RI	261			10.44		
NGC 0278 2 F00		00:52:04.3					1.65	28 RI	2.65	21 RI	25.03	40 MI	44.45	418 OT	541	11.45	9,90	10.03		
NGC 02B9 N FOC		00:52:42.8					0.45	30 RI	0.60	37 RI	5.47	38 RI	16.90	121 MI	1528	21.60		10.03		VV484 AM0050-312
MCG+12-02-001 2 F00		00:54:04.0				U	0.78	52 UT	3.51	28 UT	21.92	32 UT	29.11	424 UT	4706	64.28		11.44		
SMC 2		00:52:44.7					67.03		270.18	- RR	6688.9		15021.9	- RR	158		7.84	7.86		
UCC 0055651 Рос ИСС 0300 N		00:54:49.9					0.34 0.90	21 UT 29 RZ	0.45 1.96	39 UT 38 HZ	5.57 15.30	45 UT 79 RZ	10.84 48.04	100 UT 208 KZ	4640 142		10.73 8.35	10.84 8.39		AM0652 375
100 VVV H		0010310810	01111100	800122	10125		0.00	20 62	1.00	00 112	10.00	10 112	10101	200 112	112	2.00	0.00	0.00	020	1110002 010
NGC 0317B 2 FOO		00:57:40.9				R	0.20	23 UT	1.03	22 UT	9.16	36 UT	13.60	142 um	5334	70.30		11.11		$8.2\times042, 8.12401313$
NGC 0337 1 FOC		00:59:49.6					0.24	P8 IU.	0.78	50 RT	9.07	43 RI	20.11	<u>387</u> ИІ	1623	21.59		10.13		
IC 1623A/B 1 FOI		01:07:46.3				н	1.03	30 RI	3.65	50 UT	22.93	62 UT	31.55	113 UT	6028			11.65	47	ARP236 VV114
MCG-03-04-014 1 F01		01:10:08.5					0.34	43 UT	0.90	36 UT	7.25	60 UT	10.33			136.17		11.63	49	
ESO 244-G012 2 F01 NSC 0470 1 F01		01:18:08.6					0.39:	46 UFn	1.95	37 MI 24 HE	9.27	53 UT	11.75	92 OT	6856	90.85		11.39:		V V837 A M0115-444
CGCG 436-030 1 F01		01:18:45.0 01:20:01.4					0.42 0.21	36 UT 43 UT	$1.11 \\ 1.54$	74 UT 48 UT	7.22	43 UT 38 UT	12.20 9.67	117 UT 188 UT	2374 9415	$31.12 \\ 122.02$		10.37 11.63		A H 15227
USC 00903 1 Fot		01:21:47.4					0.37	37 UT	0.55	43 UT	7.78	51 UT	15.45	155 UT	2518	33.15		10.44		
NGC 0520 1 F01		01:24:34.4					C. 9C	39 RI	3.22	30 MT	31.52	40 UT	47.37	145 UT	2305	30.22		10.91		AH17157;V V201_K PG001
NGC 0598 1 01						-	32.69	- RR	40.28		419.65		1256.43	- RR	-179	0.84"		9.07		
1100 0010 4 74		04.04.47.0	00-05-40	000 00	04 05						09 00	DO 37	F0.04	75 47	4.4.75	4.4 100	4.0.00	45.09	-	
NGC 0513 1 F01 ESC 353-6020 2 F01		01:34:17.8 01:34:49.4					2.25 0.37	47 RI 33 RI	$4.32 \\ 0.71$	35 RI 22 UT	27.38 7.17	38 RI 36 UT	59.21 15.54	78 MT 129 UT	$1475 \\ 4797$	63.37		10.37 11.00		¥ V 524; A M01 82-204
NGC 0625 2 F01		01:35:05.8					0.20	34 UT	1.30		5.73	40 UT	8.63	129 UT 133 UT	386	4.46	8.40	B.57		
NGC 0628 1 F01							2.45	38 BZ	2.87	60 RZ	21.54	45 BZ	54.45	229 RI	654	9.99	9.82	9.95		AM0102-414
ESG 297-0011/012 2 F01		01:36:24.7				s	0.37:					38 RID				67.88				AM0154-375
IRAS F01364-1042 1 F01		01:38:52.6					<0.16	-	0.44		6.62	42 UT	6.88	114 UT		188.37				
NGC 0543B 2 F01		01:39:12.9					0.32	17 UT	0.84		7.36	31 UT	13.75	134 UT	3966	54.59				A2J0139-751
NGC 0650 1 F01	1403+1323	01:43:02.1	+13:38:45	141.60	-47.35		3.05	76 MI	7.30		65.52	88 UT	114.74	134 MI	856	12.33				
EII ZM 035 1 FOI	1417+1651	01:44:30.0	+17:08:04	140.66	-43.94		< 0.06	-	1.03	59 UT	13.25	50 UT	14.30	155 ur	8257	106.96	11.52	11.56	65	
NGC 0693 1 FOI	1479+0553	01:50:30.9	+06:08:43	148.34	-53.79		0.24	41. UT	0.55	50 UT	6.74	43 UT	11.83	136 UT	1593	21.21	9.86	9.96	535	

EXAMPLE - STAR FORMING GALAXIES

Believe that star-formation leads to supernovae, and that supernovae produce gamma-rays:

$$\log_{10}\left(\frac{L_{\gamma}}{\mathrm{erg}\ \mathrm{s}^{-1}}\right) = \alpha \log_{10}\left(\frac{L_{IR}}{10^{10}L_{\odot}}\right) + \beta$$

If there is uncertainty in the efficiency of gamma-ray production from star formation:

$$P_{c}\left(L_{\gamma,c}\right) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{\log(L_{\gamma,c}) - \alpha \log L_{IR} - \beta}{2\sigma^{2}}\right)$$

$$\phi_c = \frac{1}{4\pi d_{SFG}^2} L_{\gamma,c}$$

Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

M. Ackermann,¹ A. Albert,² B. Anderson,^{3,4} L. Baldini,⁵ J. Ballet,⁶ G. Barbiellini,^{7,8}

D. Bastieri,^{9,10} K. Bechtol,² R. Bellazzini,¹¹ E. Bissaldi,¹² E. D. Bloom,²

E. Bonamente,^{13,14} A. Bouvier,¹⁵ T. J. Brandt,¹⁶ J. Bregeon,¹¹ M. Brigida,^{17,18} P. Bruel,¹⁹

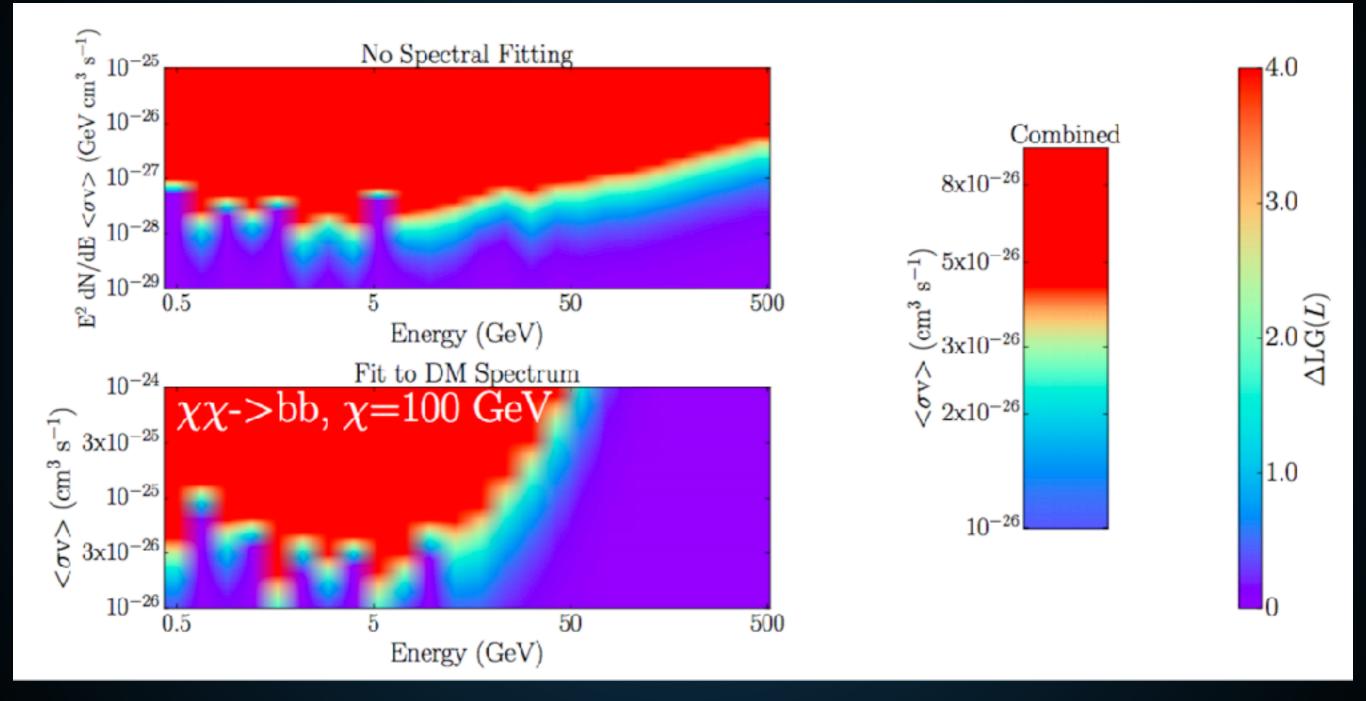
R. Buehler,¹ S. Buson,^{9,10} G. A. Caliandro,² R. A. Cameron,² M. Caragiulo,¹⁸

P. A. Caraveo,²⁰ C. Cecchi,^{13,14} E. Charles,² A. Chekhtman,²¹ J. Chiang,²

S. Ciprini,^{22,23} R. Claus,² J. Cohen-Tanugi,^{24,*} J. Conrad,^{3,4,†} F. D'Ammando,²⁵

A. de Angelis,²⁶ C. D. Dermer,²⁷ S. W. Digel,² E. do Couto e Silva,² P. S. Drell,²

A. Drlica-Wagner,^{2, 28, ‡} R. Essig,²⁹ C. Favuzzi,^{17, 18} E. C. Ferrara,¹⁶ A. Franckowiak,²

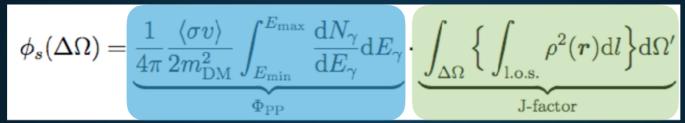

Y. Fukazawa,³⁰ S. Funk,² P. Fusco,^{17,18} F. Gargano,¹⁸ D. Gasparrini,^{22,23} N. Giglietto,^{17,18}

M. Giroletti,²⁵ G. Godfrey,² G. A. Gomez-Vargas,^{31,32,33} I. A. Grenier,⁶ S. Guiriec,^{16,34}

M. Gustafsson,³⁵ M. Hayashida,³⁶ E. Hays,¹⁶ J. Hewitt,¹⁶ R. E. Hughes,³⁷ T. Jogler,²

PREVIOUS METHOD (ACKERMANN ET AL. 2014 + MANY OTHERS)

Carpenter et al. 2016


First Fit the Flux of a Individual point source in a number of energy bin, assuming a given spectrum.

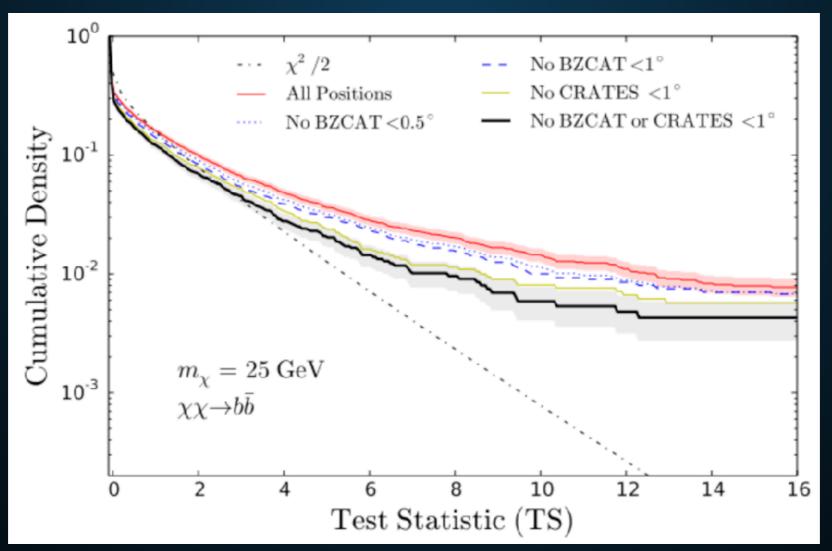
PREVIOUS METHOD (ACKERMANN ET AL. 2014 + MANY OTHERS)

$$\mathrm{TS} = -2\ln\left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} \mid \mathcal{D})}{\mathcal{L}(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}} \mid \mathcal{D})}\right) \,.$$

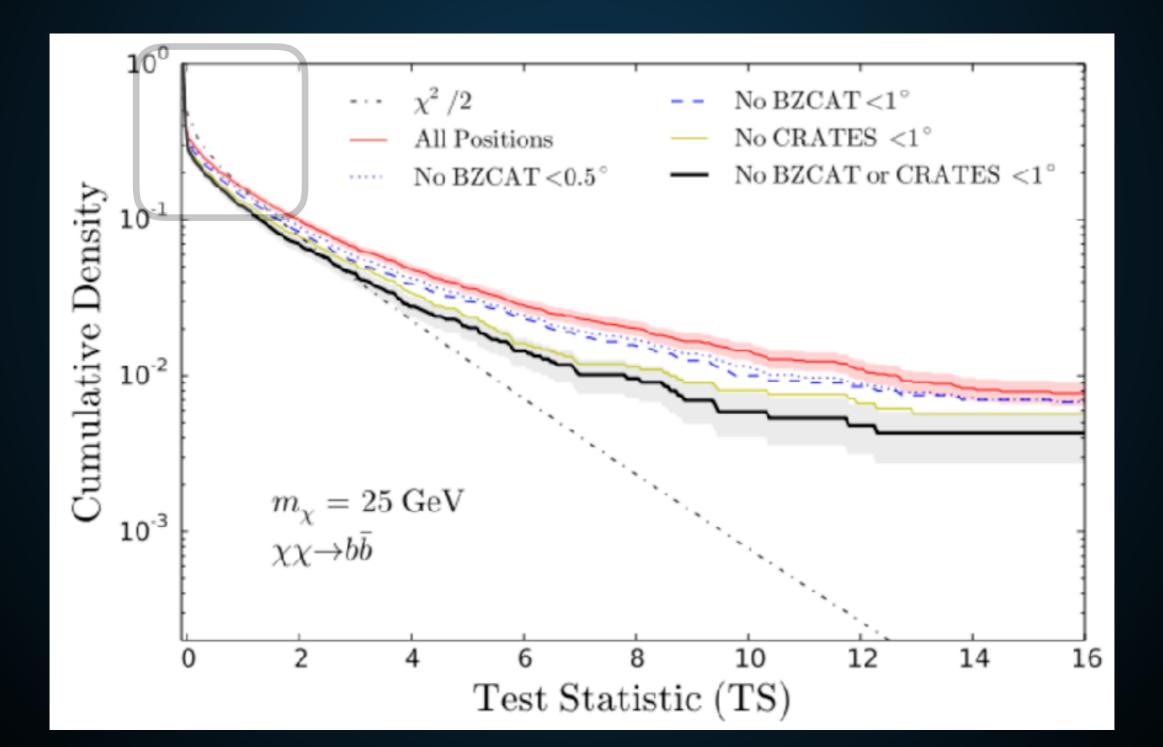
null $(\boldsymbol{\mu} = \boldsymbol{\mu}_0)$ alternative hypotheses $(\boldsymbol{\mu} = \hat{\boldsymbol{\mu}})$

Calculate the improvement in log-likelihood by adding a source with a given flux at a specific sky position.

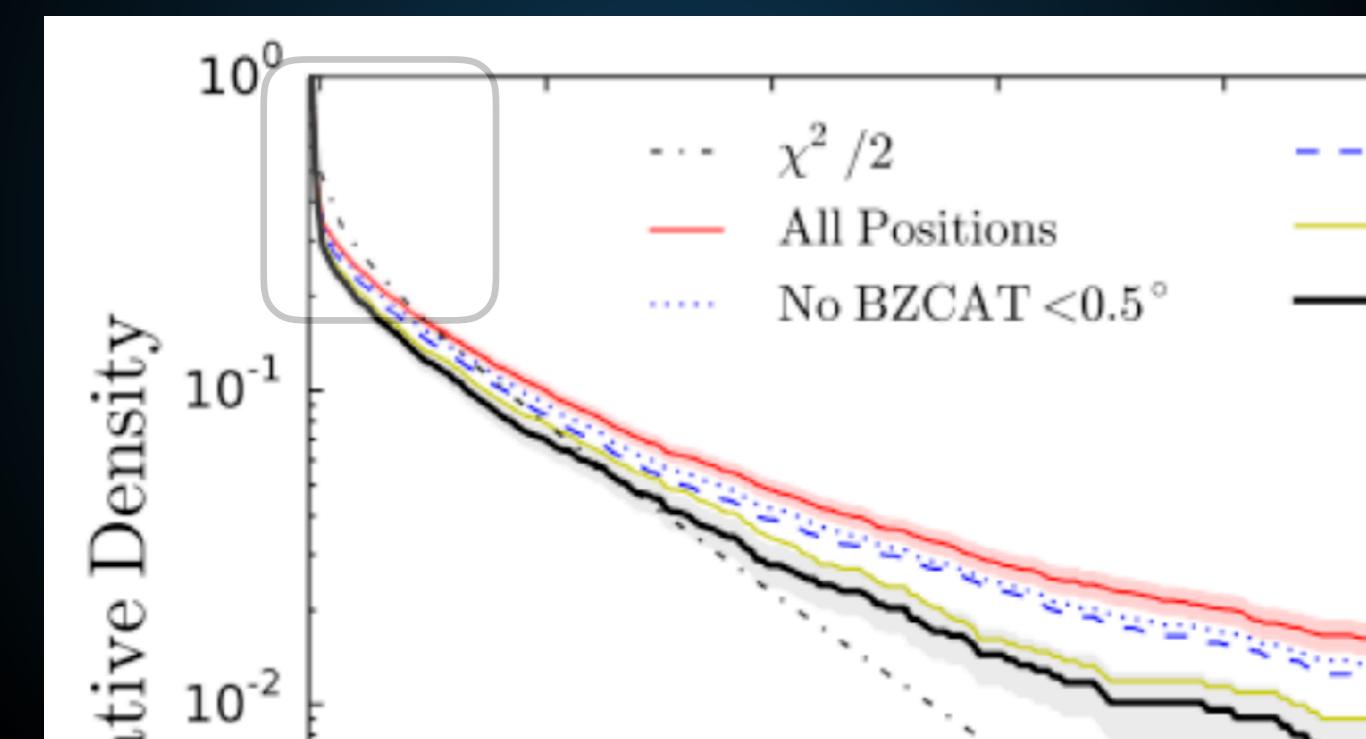
Assume a particle physics model (blue)


improvement in fit from adding a dwarf with a given flux

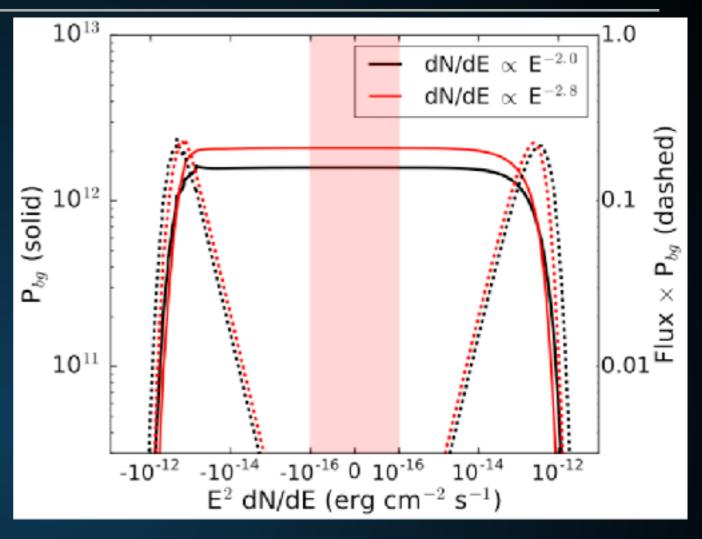
$$\begin{split} \tilde{\mathcal{L}}_i(\boldsymbol{\mu}, \boldsymbol{\alpha}_i \,|\, \mathcal{D}_i) = & \mathcal{L}_i(\boldsymbol{\mu}, \hat{\boldsymbol{\theta}}_i \,|\, \mathcal{D}_i) \\ \times \frac{1}{\ln(10) J_i \sqrt{2\pi}\sigma_i} e^{-(\log_{10}(J_i) - \overline{\log_{10}(J_i)})^2 / 2\sigma_i^2} \end{split}$$


cost from modifying the J-factor of the dwarf to accommodate that flux in a certain model

$$ilde{\mathcal{L}}(oldsymbol{\mu}, egin{array}{c} oldsymbol{lpha}_i \, | \, \mathcal{D}) = \prod_i ilde{\mathcal{L}}_i(oldsymbol{\mu}, oldsymbol{lpha}_i \, | \, \mathcal{D}_i)$$


Find the total likelihood as the product of the individual likelihoods, and then correlate with a given probability by comparing with blank sky locations:

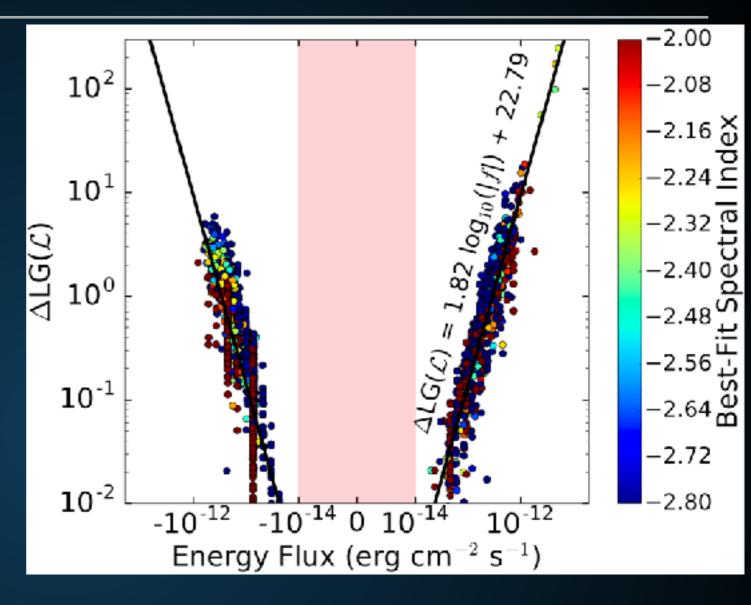
Another problem with this model is seen for the 50% of sources with almost no TS.



Another problem with this model is seen for the 50% of sources with almost no TS.

DIFFICULTIES: NEGATIVE BACKGROUND FLUCTUATIONS

- Background fluctuations are almost as likely to be negative as positive.
- These background fluxes can be much brighter than individual sources – which will then appear to have no flux.

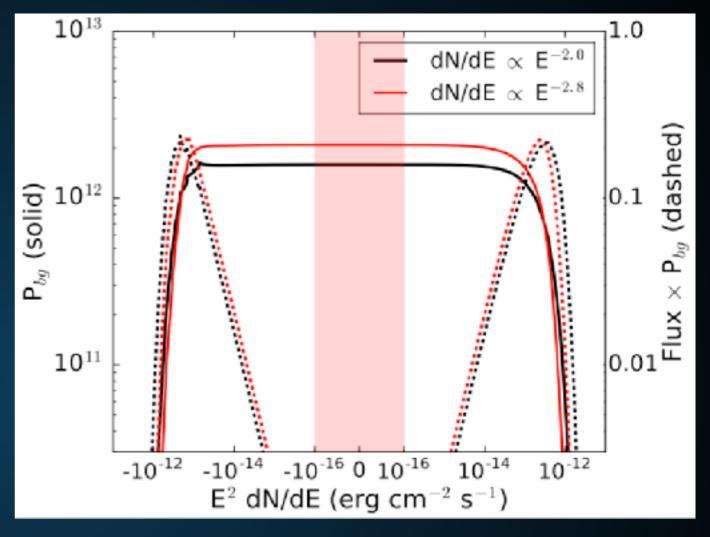

Need a solution that can find a correlation even in the limit of significant negative background fluctuations.

CORRELATION BETWEEN FLUX AND LG(L)

TS is a photon counting statistic:

 $P(k \text{ events in interval}) = e^{-\lambda} rac{\lambda^k}{k!}$

The LG(L) change produced by a pointsource scales directly with its flux.


- Can compute the correlation between fluxes and LG(L) and compute the likelihood of having a point source at a specific value directly in flux space.
- Don't need to directly use this relation.

CORRELATION BETWEEN FLUX AND LG(L)

The probability of having a background sky location with a given flux is:

$$P_{bg}(\phi_{bg}) = \frac{1}{N} \sum_{i} A_i \exp\left(-\mathrm{LG}(\mathcal{L}(\phi_{bg}))\right)$$

Can go through and test the point source flux at each sky position for every possible choice of background fluctuation.

While the probability of having a source with a given flux comes from the correlation function:

$$\log_{10}\left(\frac{L_{\gamma}}{\mathrm{erg}\;\mathrm{s}^{-1}}\right) = \alpha\;\mathrm{log}_{10}\left(\frac{L_{IR}}{10^{10}L_{\odot}}\right) + \beta$$

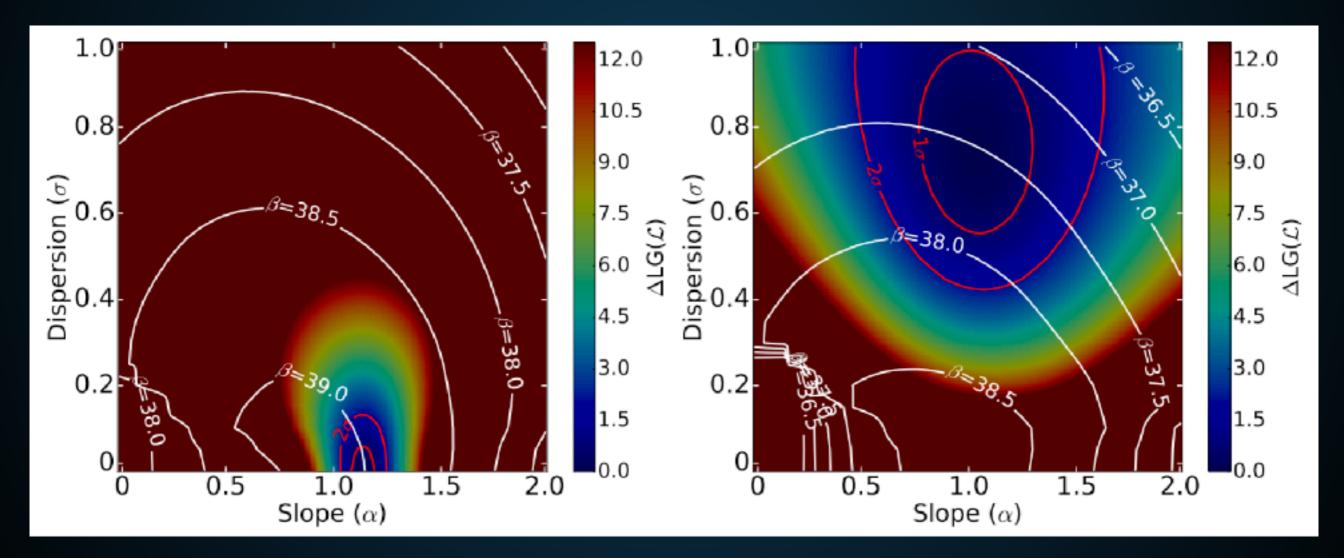
And can be calculated by:

$$P_c(L_{\gamma,c}) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\log(L_{\gamma,c}) - \alpha \log L_{IR} - \beta}{2\sigma^2}\right) \qquad \phi_c = \frac{1}{4\pi d_{SFG}^2} L_{\gamma,c}$$

IRAS REVISED BRIGHT GALAXY SAMPLE INTEGRATED FLUX DENSITIES AND LUMINOSITIES

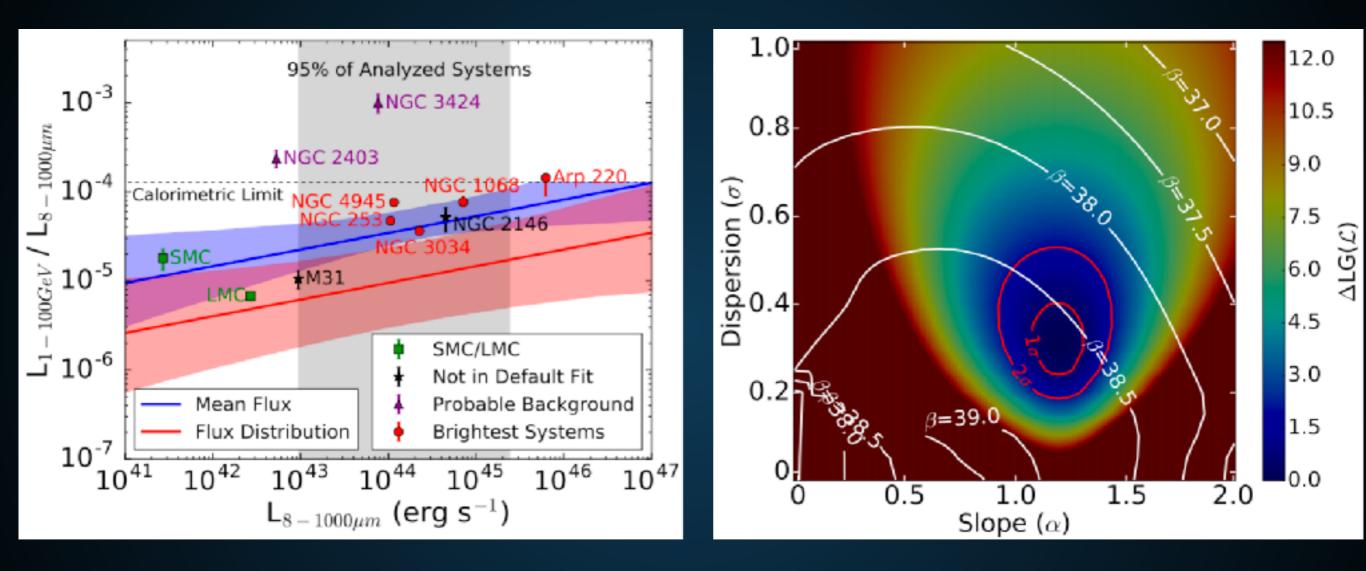
Nan	ne	R.A. (J20	00) DKC	É	Ь ня	12	µm.	25,	um	60,	1779	100,	μm	ez.	D	logi	L_{0r}, L	(r)	IG/AGN Names
Common (1)	IRAS (2)	$\begin{array}{c} \mathbf{h}\mathbf{h};\mathbf{n}\mathbf{n};\mathbf{a}\mathbf{s}:\mathbf{s}\\ (3) \end{array}$	(4)	с (5)	: (6) (7)		аJу SMF 8}		n.Jy SMF)}		mJy SMF 0)	Ју (1)	лЈу SMF L}	ka:/s (12)	Ирс (13)	L_{\odot}		Rank (16)	(17)
NGC 0023	1 F00073+2538	00:09:55.1	+25:55:37 1	111.38	-36.01	0.66	38 RI	1.29	45 RI	9.03	46 UT	15.66	114 UT	4536	59.62	10.89	11.05	183	MRE0545
NGC 0034	1 F00085-1223	00:11:08.6	-12:08:27	BB.78	-72.25	6.35	32 UT	2.39	55 UT	17.05	45 UT	16.85	135 UT	5931	77.60	11.34	11.44	83	V VSAU: M R B 0908
NGC 0055	2	R 00:14:54.5	-39:11:19 3	332.89	-75.74	1.34	- ER	6.25	- RR	77.00	- RR	174.09	- RR	125	3.10^{3}	8.31	9.36	602	
NCS-02-01-051/2	1 FOOL63-1039	00:18:51.4	-10:22:33	96.77	-71.57 S	0.28	34 NI	1.20	55 UT	7.48	48 MI	9.66	138 um	8112	105.76	11.27	11.41	88	A 8 P256 - V V352
NGC 0134	2 F00278-3331	R 00:30:21.6	-33:14:38 3	338.32	-82.38	2.35	48 EI	2.59	36 R.E	22.65	53 RI	58.87	130 MI	1579	15.90°	10.25	10.37	398	A 50 0 27, 333
ESU 079-G003	2 F00298-6431	00:32:02.0	-64:15:14 3	306.41	-52.74	0.42	S EI	0.88	25 R.	7.05	38 RI	17.41	91 UT	2616	35.31	10.42	10.51	354	A M00 039 643 N KH002
NGC 0150	1 F00317-2804	00:34:16.2	-27:48:10	21.90	-86.13	0.66	40 EI	1.66	35 M.C	9.66	56 MI	17.72	166 UT	1584	$16.20^{ m V}$	9.79	9.95	536	A M0.031_000 H
NGC 0157	1 F00322-084D	00:34:46.0	-08:23:53 1	110.27	-70.86	1.61	35 EI	2.17	42 R.E	17.93	48 EI	42.43	103 MI	1637	21.92	10.40	10.52	352	
ESU 350-16038	2 F00344-3349	00:36:52.0	-33:33:19 3	328.10	-82.85	0.52	19 EI	2.51	34 UT	6.88	41 ur	5.04	27 UT	6156	81.20	11.02	11.22	135	A.50.013.4.334
MGC 0174	1 F00345-2945	00:36:58.4	-29:28:45 3	355.64	-86.04	0.41	31 UT	1.27	34 UT	11.36	48 UT	19.77	145 OT	3569	47.28	10.79	10.90	234	A MOG 8 4-204

Then the total probability of some correlation with $\{\alpha, \beta, \sigma\}$


$$Probability of a given flux from the background and point source improving the fit to the data
$$P(\alpha, \beta, \sigma) = \prod_{j} \int_{-\infty}^{\infty} \int_{0}^{\infty} \exp(-\text{LG}(\mathcal{L}(\phi_{c} + \phi_{bg}))) \times P_{bg}(\phi_{\gamma, bg}) P_{c}(\phi_{c}, \alpha, \beta, \sigma) \, \mathrm{d}\phi_{c} \, \mathrm{d}\phi_{bg}$$$$

probability of this background fluctuation

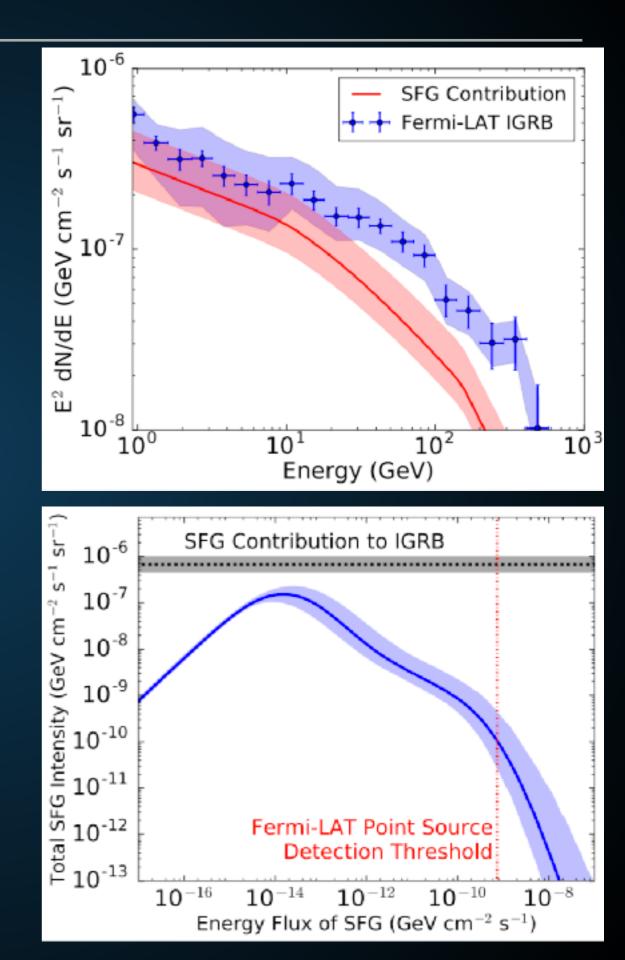
probability of this point source flux.


Injected signal with:

$\log_{10}(L_{\gamma} / (\text{erg s}^{-1}) = 1.17 \log_{10}(L_{IR} / 10^{10} L_{\odot}) + 38.985$

RESULTS

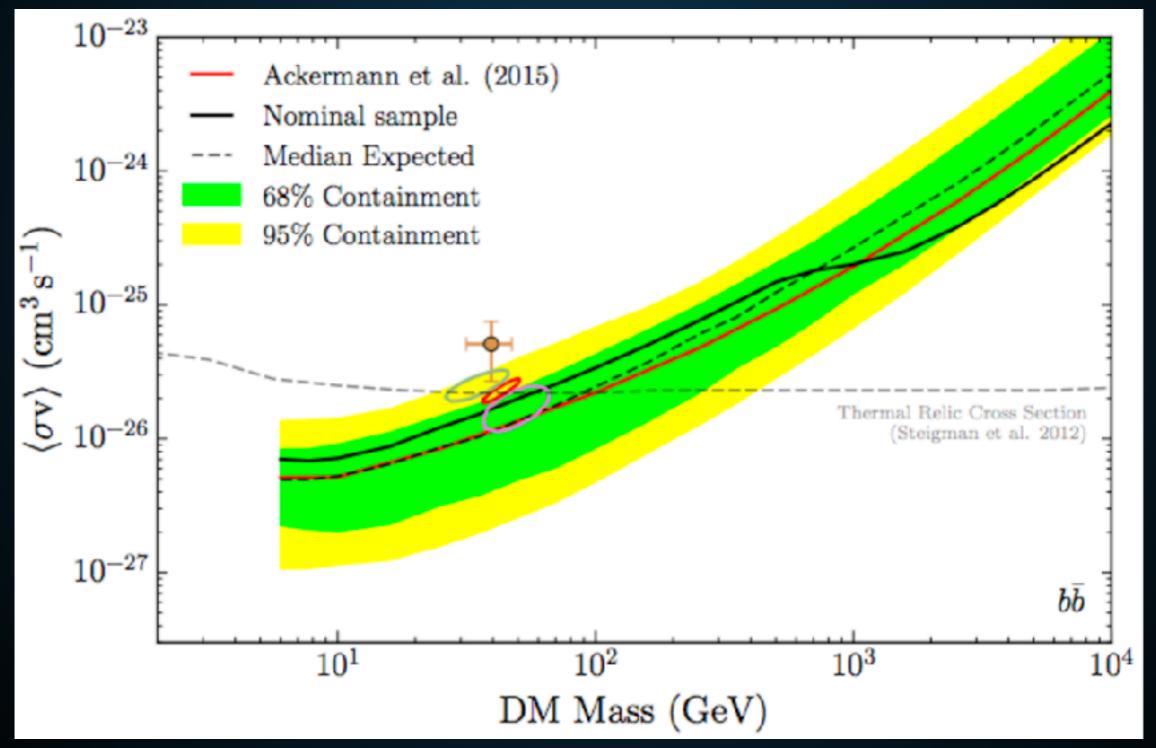
Looking at science results momentarily:


Have a model that predicts the luminosities of the brightest star forming galaxies, while remaining consistent with the population of dimmer systems.

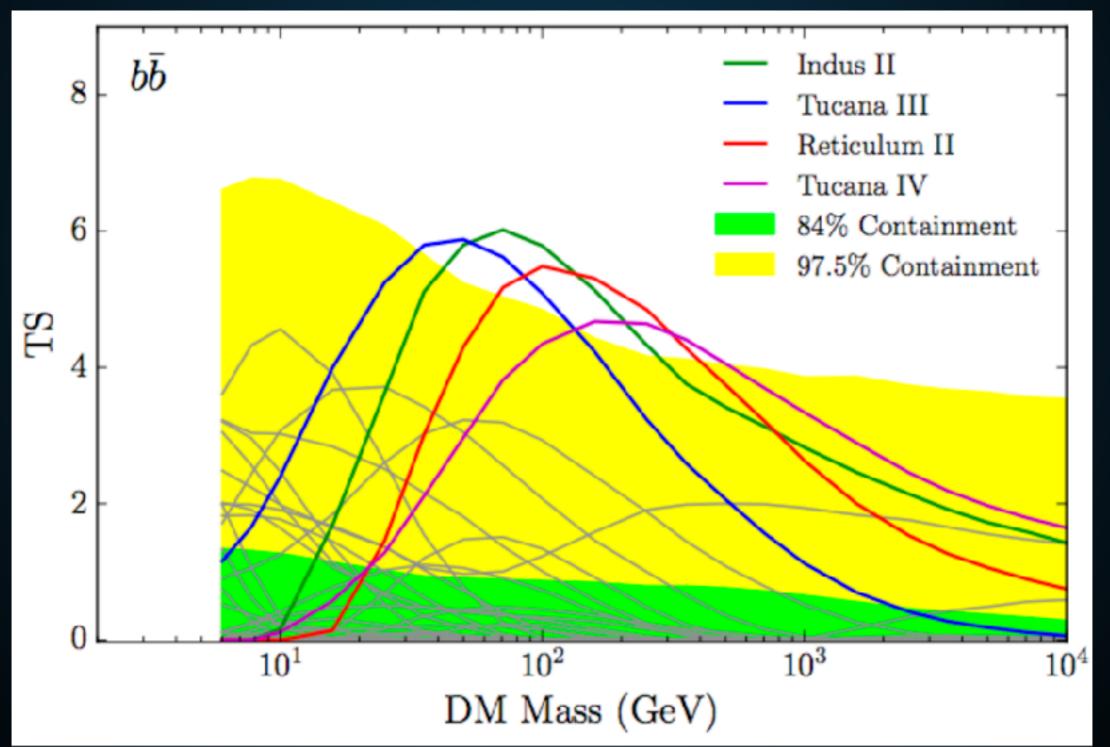
EXTRAPOLATION TO DIM SOURCES

Extrapolation to dim point sources in FIR observations:

$$\Phi_{IR,X}(L_{IR},z) \text{dlog}L_{IR} = \Phi_{IR,X}^{*}(z) \left(\frac{L_{IR}}{L_{IR,X}^{*}(z)}\right)^{(1-\alpha_{IR,X})} \times \exp\left[-\frac{1}{2\sigma_{IR,X}^{2}} \log^{2}\left(1 + \frac{L_{IR}}{L_{IR,X}^{*}(z)}\right)\right] \text{dlog}L_{IR} \quad (6)$$


We can now calculate the total contribution of all starforming galaxies to the totally isotropic gamma-ray flux.

DWARF SPHEROIDAL GALAXIES


Transferring this analysis to dwarf galaxies is straightforward.

Analysis potentially has a very high impact

DWARF SPHEROIDAL GALAXIES

- Transferring this analysis to dwarf galaxies is straightforward.
- Analysis potentially has a very high impact

LOCAL ORGANIZING COMMITTEE Katle Auchetti (co-chair John Beacom James Beatty Mauricio Bustamante (co-chair) Tim Linden (co-chairt Annika Peter

INTERNATIONAL ADVISORY COMMITTEE

AUGUST 7-

Laura Baudis (U. Zurich) John Beacom (OSU) Lars Bergström (Stockholm U.) Gianfranco Bertone (GRAPPA) Elliott Bloom (Stanford) Marco Grelli (LPTHE, Paris) Joakim Edsjö (Stockholm UL) Jonathan Feng (UCI)

Felix Aharonian (MPI Heidelberg) Gian Giucice (CERN) Sunil Gupta (TIFR) Francis Halzen (WIPAC) Dan Hopper (Fermilab) Olga Mena (IFIC) Subir Sarkar (Oxford, NBI) Tim Tait (UCI) Masahiro Teshi ma (ICRR) Zhang Xin Min (IHEP)

THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND

ASTROPARTICLE PHYSICS

INVITED SPEAKERS

TEV PARTICLE ASTROPHYSICS

Nima Arkani-Harned (IAS Princeton) Julia Becker Tjus (Ruhr U. Bochum) Veronica Bindi (U. Hawaii at Manoa) Jo Bovy (U. Toronto) Ralph Engel (KIT) Gianluca Gregori (U. of Oxford) Francis Halzen (U. of Wisconsin, Madison) Tracy Slatyer (MIT) Fiona Harrison (Caltech)

Xiangdong Ji (Shanghai Jiao Tong U.) Marc Kamionkowski (Johns Hopkins U.)

Victoria Kaspi (McGill U.) Marek Kowalski (DESY) Mariangela Lisanti (Princeton U.) Miguel Mostafá (Penn State U.) Hitoshi Murayama (UC Berkeley)* Samaya Nissanke (Radboud U.) Iodd Thompson (Ohio State U.)* Abigail Vieregg (U. of Chicago) ² = To be confirmed

https://tevpa2017.osu.edu/

TeVPA 2017

tevpa2017.osu.edu

- August 7–11, Columbus, OH
- Registration and abstract submission are open
- Pre-meeting mini-workshops on Sunday, August 7

- Some Challenges:
 - Still need to analyze blank sky locations
 - Extremely expensive
 - Only ~10⁵ independent locations
 - How to deal with negative model expectations?
 - Need to assume that the flux/likelihood correlation is similar in blank sky locations and in sources.