
TIM LINDEN

Rise of the Leptons: Pulsar Emission Dominates the TeV Gamma-Ray Sky

APS April Meeting

Geminga

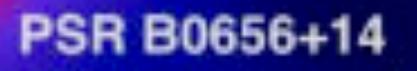
PSR B0656+14

(c) 2017 HA Deservive Commune: Attributio Rises Image: (c) C

o

The Ohio State University

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS



Moon (To Scale)

TeV Flux ~ 3 x 10³³ TeV s⁻¹ >10% of Spindown Power!

Powered by inverse Compton scattering of accelerated electrons

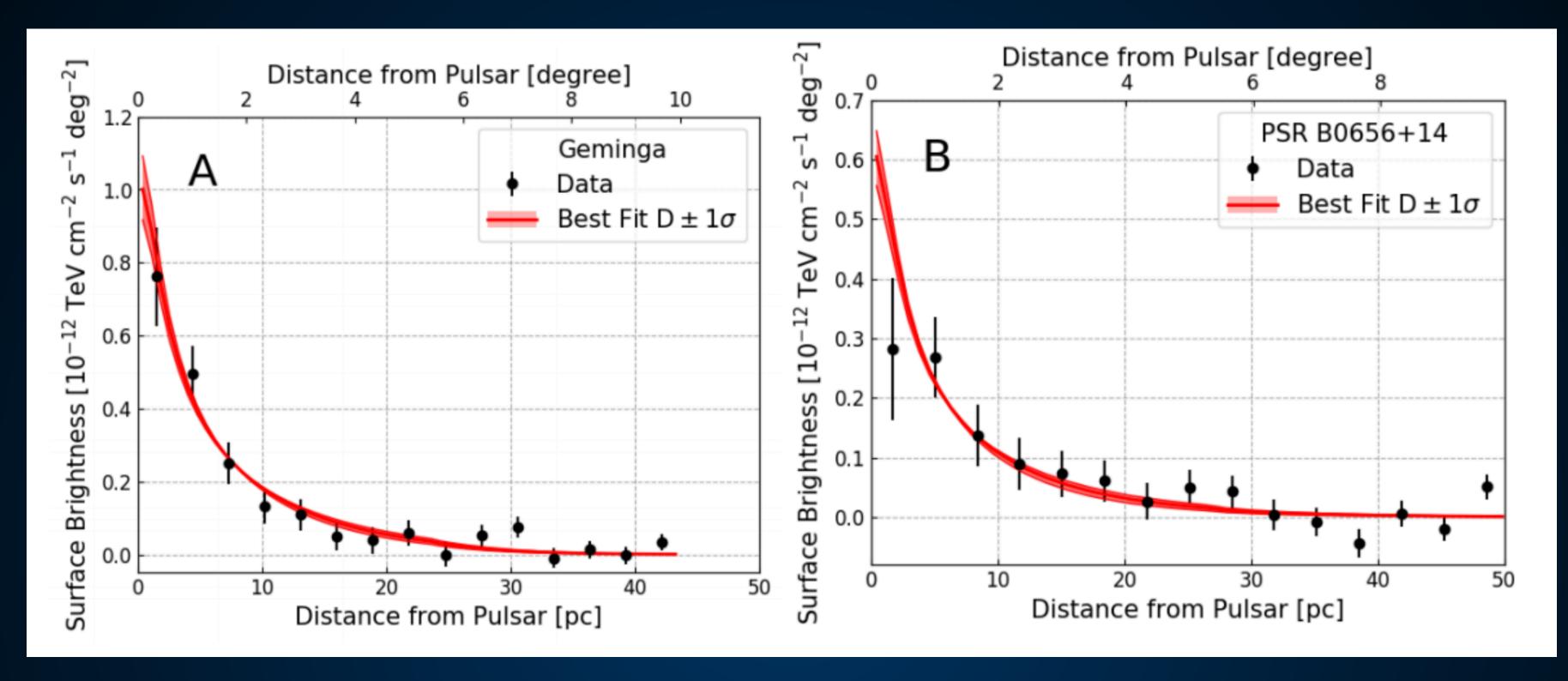
Extended to 5° (20 pc)!

I will call these objects TeV halos **2HWC Catalog (1702.02992)** HAWC Collaboration (1711.06223)

HESS Observations

Table 1 HGPS	Table 1 HGPS sources considered as firmly identified pulsar wind nebulae in this paper.											
HGPS name	ATNF name	Canonical name	$\lg \dot{E}$	$ au_{ m c}$	d	PSR offset	Г	R_{PWN}	$L_{1-10 \text{ TeV}}$			
				(kyr)	(kpc)	(pc)		(pc)	$(10^{33}{ m ergs^{-1}})$			
$J1813 - 178^{[1]}$	J1813 - 1749		37.75	5.60	4.70	< 2	2.07 ± 0.05	4.0 ± 0.3	19.0 ± 1.5			
J1833 - 105	J1833 - 1034	$G21.5 - 0.9^{[2]}$	37.53	4.85	4.10	< 2	2.42 ± 0.19	< 4	2.6 ± 0.5			
J1514 - 591	B1509 - 58	$MSH \ 15-52^{[3]}$	37.23	1.56	4.40	< 4	2.26 ± 0.03	11.1 ± 2.0	52.1 ± 1.8			
J1930 + 188	J1930 + 1852	$G54.1+0.3^{[4]}$	37.08	2.89	7.00	< 10	2.6 ± 0.3	< 9	5.5 ± 1.8			
J1420 - 607	J1420 - 6048	Kookaburra $(K2)^{[5]}$	37.00	13.0	5.61	5.1 ± 1.2	2.20 ± 0.05	7.9 ± 0.6	44 ± 3			
J1849-000	J1849 - 0001	IGR J18490-0000 ^[6]	36.99	42.9	7.00	< 10	1.97 ± 0.09	11.0 ± 1.9	12 ± 2			
J1846 - 029	J1846 - 0258	Kes $75^{[2]}$	36.91	0.728	5.80	< 2	2.41 ± 0.09	< 3	6.0 ± 0.7			
J0835 - 455	B0833 - 45	Vela $X^{[7]}$	36.84	11.3	0.280	2.37 ± 0.18	1.89 ± 0.03	2.9 ± 0.3	$0.83 \pm 0.11^*$			
$J1837 - 069^{[8]}$	J1838 - 0655		36.74	22.7	6.60	17 ± 3	2.54 ± 0.04	41 ± 4	204 ± 8			
J1418 - 609	J1418 - 6058	Kookaburra (Rabbit) ^[5]	36.69	10.3	5.00	7.3 ± 1.5	2.26 ± 0.05	9.4 ± 0.9	31 ± 3			
$J1356 - 645^{[9]}$	J1357 - 6429		36.49	7.31	2.50	5.5 ± 1.4	2.20 ± 0.08	10.1 ± 0.9	14.7 ± 1.4			
$J1825 - 137^{[10]}$	B1823-13		36.45	21.4	3.93	33 ± 6	2.38 ± 0.03	32 ± 2	116 ± 4			
J1119-614	J1119-6127	$G292.2 - 0.5^{[11]}$	36.36	1.61	8.40	< 11	2.64 ± 0.12	14 ± 2	23 ± 4			
$J1303 - 631^{[12]}$	J1301 - 6305		36.23	11.0	6.65	20.5 ± 1.8	2.33 ± 0.02	20.6 ± 1.7	96 ± 5			

Table 4 Candidate pulsar wind nebulae from the pre-se

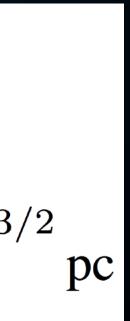

Lable 4 Callulate	able 4 Callulate pulsar which hebulae nom the pre-selection.											
HGPS name	ATNF name	$\lg \dot{E}$	$ au_{ m c}$	d	PSR offset	Г	$R_{ m PWN}$	$L_{1-10 { m TeV}}$	Rating			
			(kyr)	(kpc)	(pc)		(pc)	$(10^{33}{ m ergs^{-1}})$	1 2 3 4			
J1616 - 508 (1)	J1617 - 5055	37.20	8.13	6.82	< 26	2.34 ± 0.06	28 ± 4	162 ± 9	$\star \star \star \star$			
J1023 - 575	J1023 - 5746	37.04	4.60	8.00	< 9	2.36 ± 0.05	23.2 ± 1.2	67 ± 5	$\star \star \star \star$			
J1809 - 193 (1)	J1811 - 1925	36.81	23.3	5.00	29 ± 7	2.38 ± 0.07	35 ± 4	53 ± 3	* * * \$			
J1857 + 026	J1856 + 0245	36.66	20.6	9.01	21 ± 6	2.57 ± 0.06	41 ± 9	118 ± 13	$\star \star \star \star$			
J1640 - 465	J1640 - 4631 (1)	36.64	3.35	12.8	< 20	2.55 ± 0.04	25 ± 8	210 ± 12	$\star \star \star \star$			
J1641 - 462	J1640 - 4631 (2)	36.64	3.35	12.8	50 ± 5	2.50 ± 0.11	< 14	17 ± 4	£ * * *			
J1708 - 443	B1706 - 44	36.53	17.5	2.60	17 ± 3	2.17 ± 0.08	12.7 ± 1.4	6.6 ± 0.9	$\star \star \star \star$			
J1908 + 063	J1907 + 0602	36.45	19.5	3.21	21 ± 3	2.26 ± 0.06	27.2 ± 1.5	28 ± 2	$\star \star \star \star$			
J1018 - 589A	J1016 - 5857 (1)	36.41	21.0	8.00	47.5 ± 1.6	2.24 ± 0.13	< 4	8.1 ± 1.4	£ * ★ *			
J1018 - 589B	J1016 - 5857 (2)	36.41	21.0	8.00	25 ± 7	2.20 ± 0.09	21 ± 4	23 ± 5	$\star \star \star \star$			
J1804 - 216	B1800 - 21	36.34	15.8	4.40	18 ± 5	2.69 ± 0.04	19 ± 3	42.5 ± 2.0	$\star \star \star \star$			
$J1809{-}193~(2)$	J1809 - 1917	36.26	51.3	3.55	< 17	2.38 ± 0.07	25 ± 3	26.9 ± 1.5	$\star \star \star \star$			
J1616 - 508 (2)	B1610 - 50	36.20	7.42	7.94	60 ± 7	2.34 ± 0.06	32 ± 5	220 ± 12	£ ★ ★ ★			
J1718 - 385	J1718 - 3825	36.11	89.5	3.60	5.4 ± 1.6	1.77 ± 0.06	7.2 ± 0.9	4.6 ± 0.8	$\star \star \star \star$			
J1026 - 582	J1028 - 5819	35.92	90.0	2.33	9 ± 2	1.81 ± 0.10	5.3 ± 1.6	1.7 ± 0.5	£ ★ ★ ★			
J1832 - 085	B1830-08(1)	35.76	147	4.50	23.3 ± 1.5	2.38 ± 0.14	< 4	1.7 ± 0.4	£ £ ★ ★			
J1834 - 087	$B1830{-}08(2)$	35.76	147	4.50	32.3 ± 1.9	2.61 ± 0.07	17 ± 3	25.8 ± 2.0	\$ * * \$			
J1858 + 020	J1857 + 0143	35.65	71.0	5.75	38 ± 3	2.39 ± 0.12	7.9 ± 1.6	7.1 ± 1.5	\$ * * \$			
J1745 - 303	B1742 - 30(1)	33.93	546	0.200	1.42 ± 0.15	2.57 ± 0.06	0.62 ± 0.07	0.014 ± 0.003	\$ \$ * \$			
J1746-308	B1742 - 30 (2)	33.93	546	0.200	< 1.1	3.3 ± 0.2	0.56 ± 0.12	0.009 ± 0.003	* \$ * \$			

"TeV PWN" observed by HESS have similar fluxes and extensions.

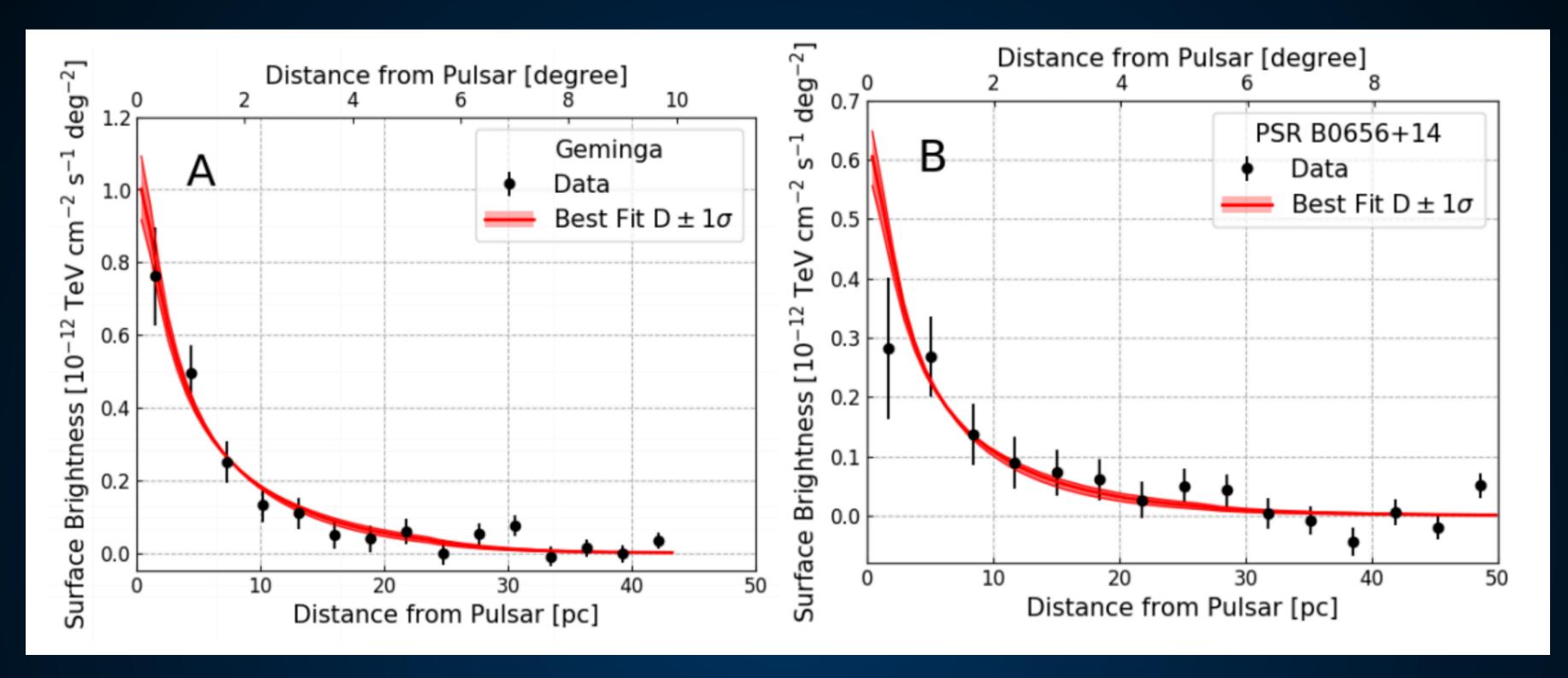
HESS Collaboration (1702.08280)

2	ect	10	m	
			, , , , , , , , , , , , , , , , , , , 	١

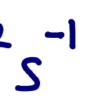
TeV Halos



Why TeV Halos? These sources are <u>much larger</u> than X-Ray PWN


HAWC Collaboration (Science; 1711.06223)

$$R_{\rm PWN} \simeq 1.5 \left(\frac{\dot{E}}{10^{35} \, {\rm erg/s}} \right)^{1/2} \times \left(\frac{n_{\rm gas}}{1 \, {\rm cm}^{-3}} \right)^{-1/2} \left(\frac{v}{100 \, {\rm km/s}} \right)^{-3}$$


TeV Halos

Why TeV Halos? These sources are <u>much smaller</u> than diffusion through the ISM

HAWC Collaboration (Science; 1711.06223)

 $D_0 \approx 5 \times 10^{28} \text{ cm}^{2-1}$ Tloss ≈30 Kyr =√Dt ≈ 2000 pc

a new morphology requires a new physical mechanism

HAWC Collaboration (Science; 1711.06223)

The Global Population of TeV Halos

Make One Key Assumption:

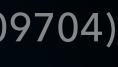
The following correlation is consistent with the data.

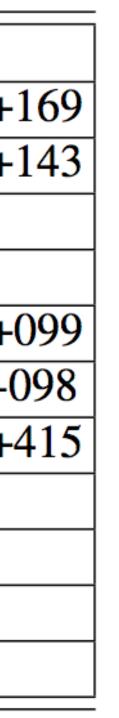
$$\phi_{\rm TeV \ halo} = \left(\frac{\dot{E}_{\rm psr}}{\dot{E}_{\rm Geminga}}\right) \left(\frac{d_{\rm Geminga}^2}{d_{\rm psr}^2}\right) \phi_{\rm Geminga}$$

Note: Using Monogem would increases fluxes by nearly a factor of 2. The power law of this correlation doesn't greatly affect the results.

HAWC Observations of TeV Halo Luminosities

ATNF Name	Dec. ($^{\circ}$)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s ^{-1})	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+1
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+1
B1951+32	32.87	3.00	107	3.7e36	3.3e34	
J1740+1000	10.00	1.23	114	2.3e35	1.2e34	
J1913+1011	10.18	4.61	169	2.9e36	1.1e34	2HWC J1912+0
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-0
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+4
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	
B0540+23	23.48	1.56	253	4.1e34	1.4e33	


view.


5 of the brightest 7 have been detected.

No dimmer systems have been detected.

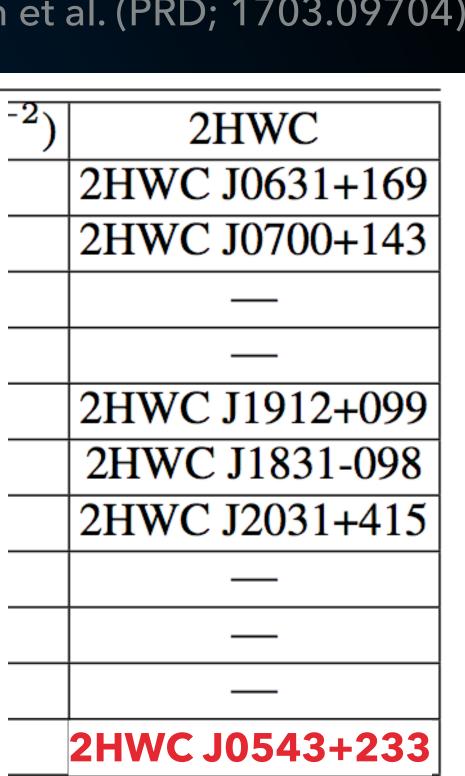
Linden et al. (PRD; 1703.09704)

Can produce a ranked list of the 57 ATNF pulsars in the HAWC field of

HAWC Observations of TeV Halo Luminosities

ATNF Name	Dec. ($^{\circ}$)
J0633+1746	17.77
B0656+14	14.23
B1951+32	32.87
J1740+1000	10.00
J1913+1011	10.18
J1831-0952	-9.86
J2032+4127	41.45
B1822-09	-9.58
B1830-08	-8.45
J1913+0904	9.07
B0540+23	23.48

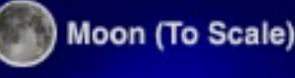
HAWC detection of TeV emission near PSR B0540+23


ATel #10941; Colas Riviere (University of Maryland), Henrike Fleischhack (Michigan Technological University), Andres Sandoval (Universidad Nacional Autonoma de Mexico) on behalf of the HAWC collaboration on 9 Nov 2017; 23:11 UT Credential Certification: Colas Riviere (riviere@umd.edu)

Subjects: Gamma Ray, TeV, VHE, Pulsar

🕑 Tweet F Recommend 5

The High Altitude Water Cherenkov (HAWC) collaboration reports the discovery of a new TeV gamma-ray source HAWC J0543+233. It was discovered in a search for extended sources of radius 0.5° in a dataset of 911 days (ranging from November 2014 to August 2017) with a test statistic value of 36 (60 pre-trials), following the method presented in Abeysekara et al. 2017, ApJ, 843, 40. The measured J2000.0 equatorial position is RA=85.78°, Dec=23.40° with a statistical uncertainty of 0.2°. HAWC J0543+233 was close to passing the selection criteria of the 2HWC catalog (Abeysekara et al. 2017, ApJ, 843, 40, see HAWC J0543+233 in 2HWC map), which it now fulfills with the additional data.


HAWC J0543+233 is positionally coincident with the pulsar PSR B0540+23 (Edot = 4.1e+34 erg s-1, dist = 1.56 kpc, age = 253 kyr). It is the third low Edot, middle-aged pulsar announced to be detected with a TeV halo, along with Geminga and B0656+14. It was predicted to be one of the next such detection by HAWC by Linden et al., 2017, arXiv:1703.09704. Using a simple source model consisting of a disk of radius 0.5°, the measured spectral index is -2.3 ± 0.2 and the differential flux at 7 TeV is $(7.9 \pm 2.3) \times 10^{-15}$ TeV-1 cm-2 s-1. The errors are statistical only. Further morphological and spectral analysis as well as studies of the systematic uncertainty are ongoing.

TIM LINDEN

Rise of the Leptons: Pulsar Emission Dominates the TeV Gamma-Ray Sky

APS April Meeting

Geminga

PSR B0656+14

(c) 2017 HA Deservive Commune: Attributio Rises Image: (c) C

o

The Ohio State University

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

TeV Halos are a Generic Feature of Pulsars

5 / 39 sources in the 2HWC catalog are correlated with bright, middleaged (100 – 400 kyr) pulsars.

ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	(kpc)	Separation	Separation	Flux (× 10^{-15})	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	(kyr)	Overla
B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1913+1011	4.61	0.34°	27.36 pc	13.0	36.6	0.36	0.11°	0.7°	169	0.30
J2032+4127	1.70	0. 11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006
	Name B0656+14 J0633+1746 J1913+1011 J2032+4127	Name(kpc)B0656+140.29J0633+17460.25J1913+10114.61J2032+41271.70	Name(kpc)SeparationB0656+140.290.18°J0633+17460.250.89°J1913+10114.610.34°J2032+41271.700.11°	Name(kpc)SeparationSeparationB0656+140.290.18°0.91 pcJ0633+17460.250.89°3.88 pcJ1913+10114.610.34°27.36 pcJ2032+41271.700.11°3.26 pc	Name(kpc)SeparationSeparationFlux ($\times 10^{-15}$)B0656+140.290.18°0.91 pc43.0J0633+17460.250.89°3.88 pc48.7J1913+10114.610.34°27.36 pc13.0J2032+41271.700.11°3.26 pc5.59	Name(kpc)SeparationSeparationFlux ($\times 10^{-15}$)Flux ($\times 10^{-15}$)B0656+140.290.18°0.91 pc43.023.0J0633+17460.250.89°3.88 pc48.748.7J1913+10114.610.34°27.36 pc13.036.6J2032+41271.700.11°3.26 pc5.5961.6	Name(kpc)SeparationSeparationFlux ($\times 10^{-15}$)Flux ($\times 10^{-15}$)RatioB0656+140.290.18°0.91 pc43.023.01.87J0633+17460.250.89°3.88 pc48.748.71.0J1913+10114.610.34°27.36 pc13.036.60.36J2032+41271.700.11°3.26 pc5.5961.60.091	Name(kpc)SeparationSeparationFlux ($\times 10^{-15}$)Flux ($\times 10^{-15}$)RatioExtensionB0656+140.290.18°0.91 pc43.023.01.872.0°J0633+17460.250.89°3.88 pc48.748.71.02.0°J1913+10114.610.34°27.36 pc13.036.60.360.11°J2032+41271.700.11°3.26 pc5.5961.60.0910.29°	Name(kpc)SeparationSeparationFlux ($\times 10^{-15}$)Flux ($\times 10^{-15}$)RatioExtensionExtensionB0656+140.290.18°0.91 pc43.023.01.872.0°1.73°J0633+17460.250.89°3.88 pc48.748.71.02.0°2.0°J1913+10114.610.34°27.36 pc13.036.60.360.11°0.7°J2032+41271.700.11°3.26 pc5.5961.60.0910.29°0.7°	Name(kpc)SeparationSeparationFlux $(\times 10^{-15})$ Flux $(\times 10^{-15})$ RatioExtensionExtension(kyr)B0656+140.290.18°0.91 pc43.023.01.872.0°1.73°111J0633+17460.250.89°3.88 pc48.748.71.02.0°2.0°342J1913+10114.610.34°27.36 pc13.036.60.360.11°0.7°169J2032+41271.700.11°3.26 pc5.5961.60.0910.29°0.7°181

e	
ap	
2	
5	

TeV Halos are a Generic Feature of Pulsars

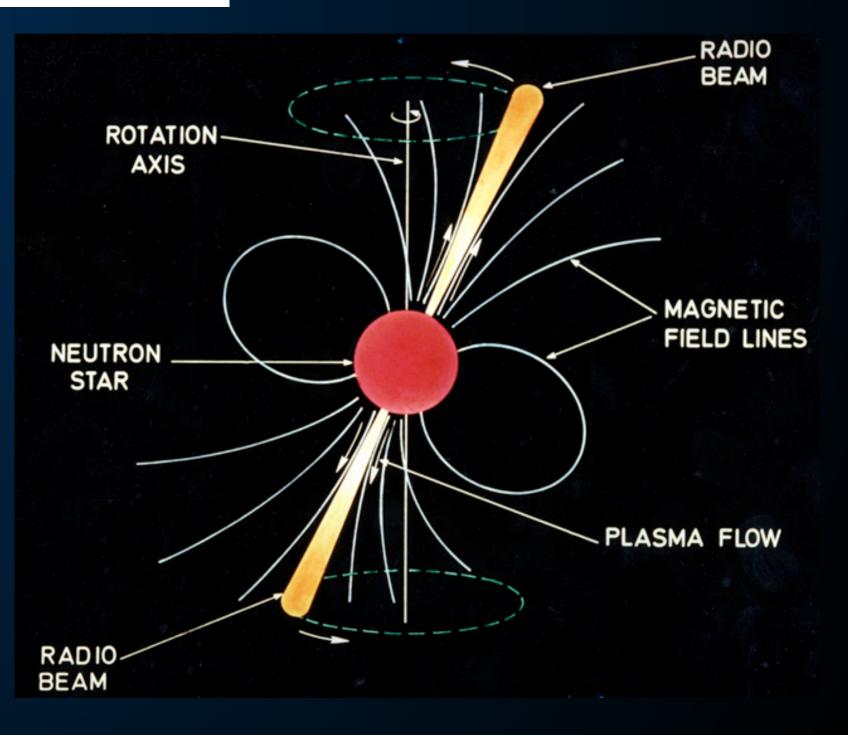
12 others with young pulsars **2.3 chance overlaps** TeV emission may be contaminated by SNR

		D ' /	A 1	D ' / 1		A , 1	T 1	T (1		•	
2HWC	ATNF	Distance	U U	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (× 10^{-15})	Flux (× 10^{-15})	Ratio	Extension	Extension	(kyr)	Overla
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9 °	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08

Linden et al. (PRD; 1703.09704)

ce	
ap 2	
2	
2	

Missing TeV Halos


Tauris and Manchester (1998) calculated the beaming angle from a population of young and middle-aged pulsars.


$$f = \left[1.1 \left(\log_{10} \left(\frac{\tau}{100 \text{ Myr}}\right)\right)^2 + 15\right]\%$$

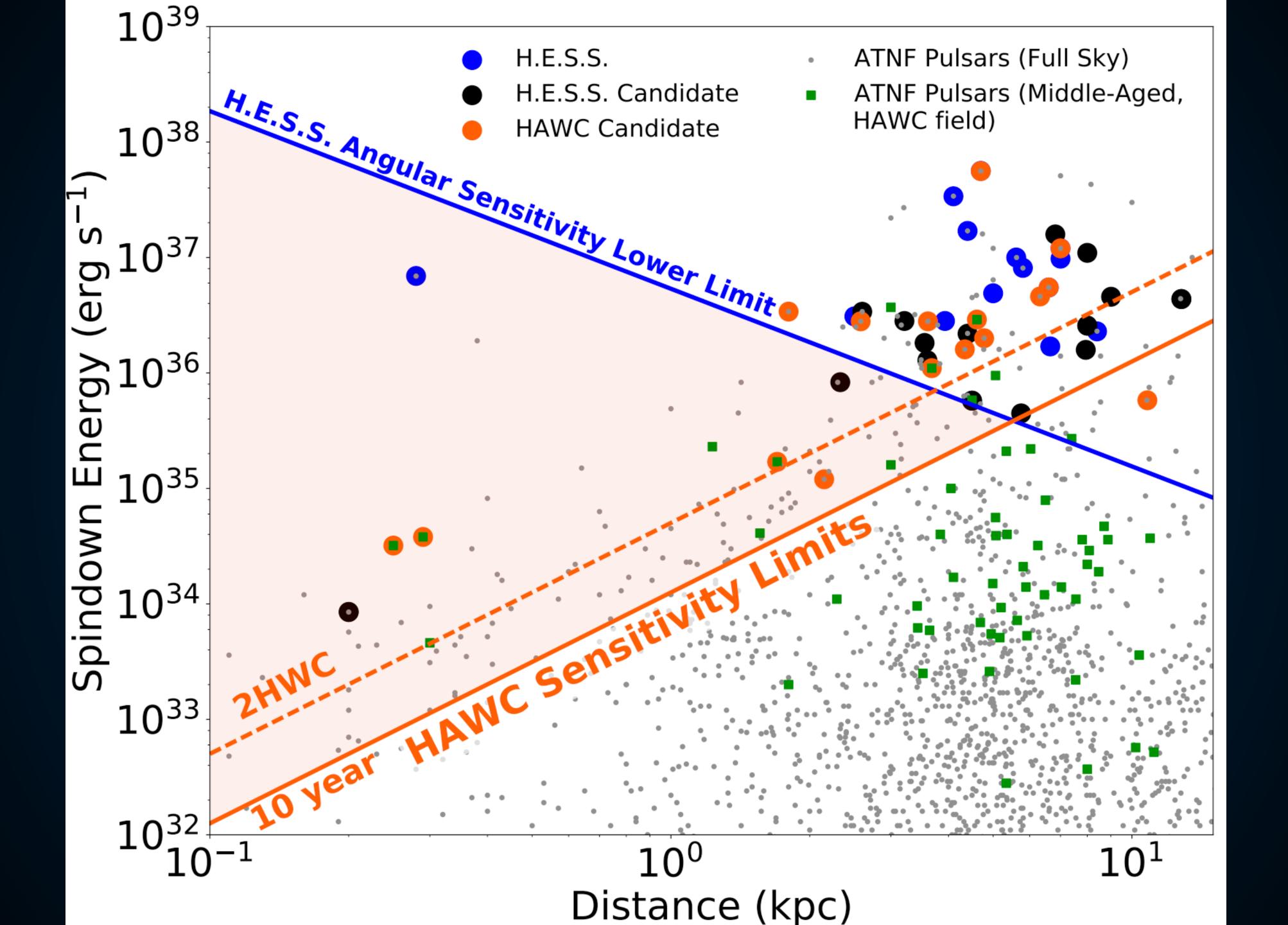
This varies between 15-30%.

> 1/f pulsars are unseen in radio surveys.

Missing TeV Halos

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	(kpc)	Separation	Separation	Flux (× 10^{-15})	Flux (×10 ⁻¹⁵)	Ratio	Extension	Extension	(kyr)	Overlap
J0700+143	B0656+14	0.29	0.18°	0.91 pc	43.0	23.0	1.87	2.0°	1.73°	111	0.0
J0631+169	J0633+1746	0.25	0.89°	3.88 pc	48.7	48.7	1.0	2.0°	2.0°	342	0.0
J1912+099	J1913+1011	4.61	0.34°	27.36 pc	13.0	36.6	0.36	0 .11°	0.7°	169	0.30
J2031+415	J2032+4127	1.70	0.11°	3.26 pc	5.59	61.6	0.091	0.29°	0.7°	181	0.002
J1831-098	J1831-0952	3.68	0.04°	2.57 pc	7.70	95.8	0.080	0.14°	0.9°	128	0.006

2HWC	ATNF	Distance	Angular	Projected	Expected	Actual	Flux	Expected	Actual	Age	Chance
Name	Name	1 1			Flux ($\times 10^{-15}$)	Flux ($\times 10^{-15}$)	Ratio	Extension	Extension	Ŭ	Overlap
J1930+188	J1930+1852	7.0	0.03°	3.67 pc	23.2	9.8	2.37	0.07°	0.0°	2.89	0.002
J1814-173	J1813-1749	4.7	0.54°	44.30 pc	243	152	1.60	0.11°	1.0°	5.6	0.61
J2019+367	J2021+3651	1.8	0.27°	8.48 pc	99.8	58.2	1.71	0.28°	0.7°	17.2	0.04
J1928+177	J1928+1746	4.34	0.03°	2.27 pc	8.08	10.0	0.81	0.11°	0.0°	82.6	0.002
J1908+063	J1907+0602	2.58	0.36°	16.21 pc	40.0	85.0	0.47	0.2°	0.8°	19.5	0.26
J2020+403	J2021+4026	2.15	0.18°	6.75 pc	2.48	18.5	0.134	0.23°	0.0°	77	0.01
J1857+027	J1856+0245	6.32	0.12°	13.24 pc	11.0	97.0	0.11	0.08°	0.9°	20.6	0.06
J1825-134	J1826-1334	3.61	0.20°	12.66 pc	20.5	249	0.082	0.14°	0.9°	21.4	0.14
J1837-065	J1838-0655	6.60	0.38°	43.77 pc	12.0	341	0.035	0.08°	2.0°	22.7	0.48
J1837-065	J1837-0604	4.78	0.50°	41.71 pc	8.3	341	0.024	0.10°	2.0°	33.8	0.68
J2006+341	J2004+3429	10.8	0.42°	80.07 pc	0.48	24.5	0.019	0.04°	0.9°	18.5	0.08


observed by HAWC.

However, only 39 HAWC sources total.

Chance overlaps, SNR contamination must be taken into account.

Linden et al. (PRD; 1703.09704)

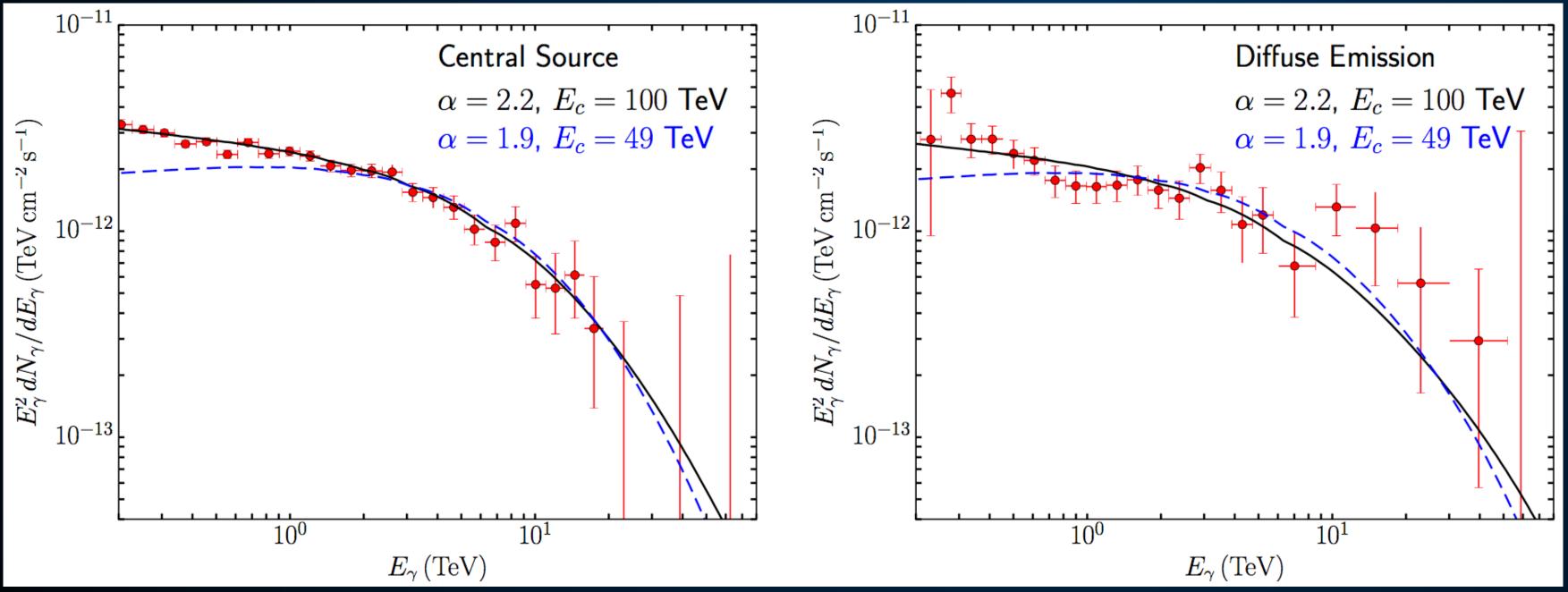
Correcting for the beaming fraction implies 56⁺¹⁵₋₁₁ TeV halos are currently

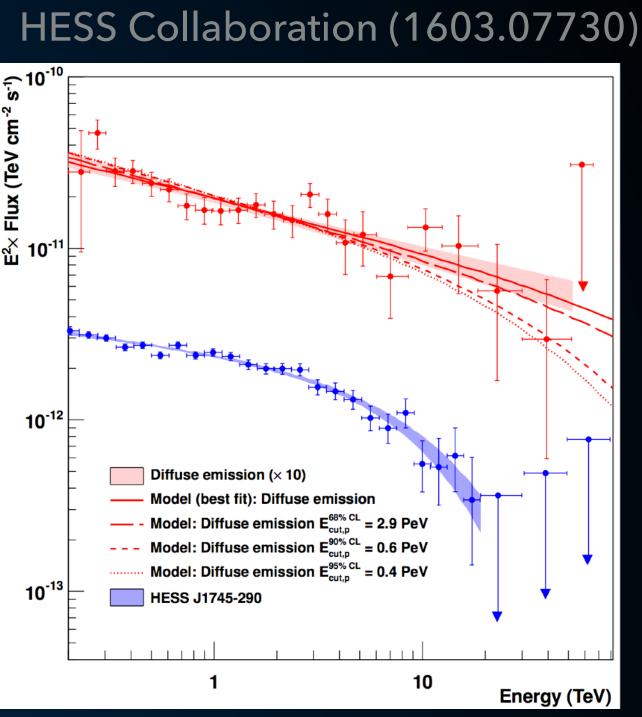

Implication I: The TeV Excess

Milagro detects bright diffuse TeV emission along the Galactic plane.

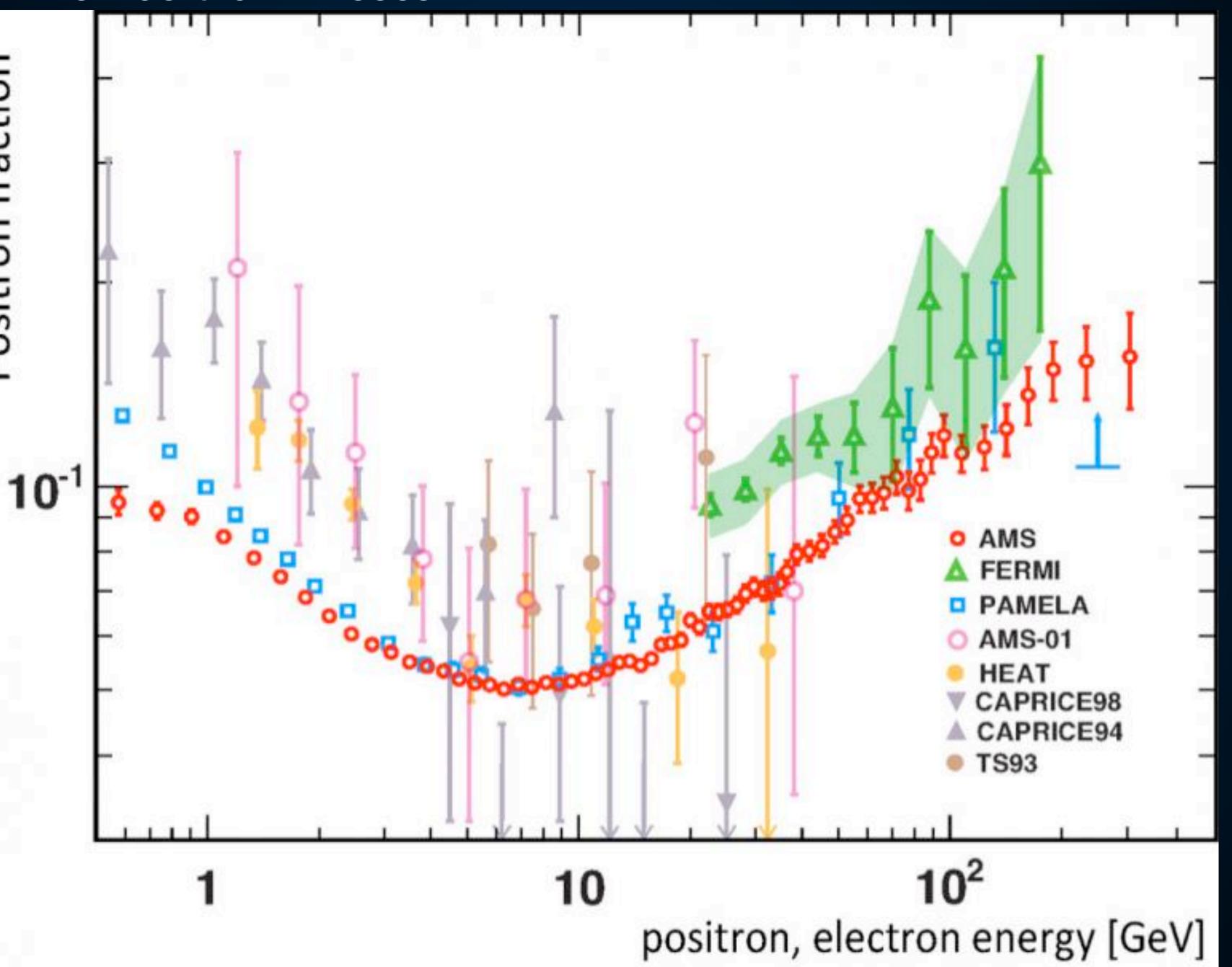
Difficult to explain with pion decay, due to steeply falling local hadronic **CR** spectrum.

The Geminga and Monogem TeV halo spectra naturally explain both the spectrum and intensity of this emission.

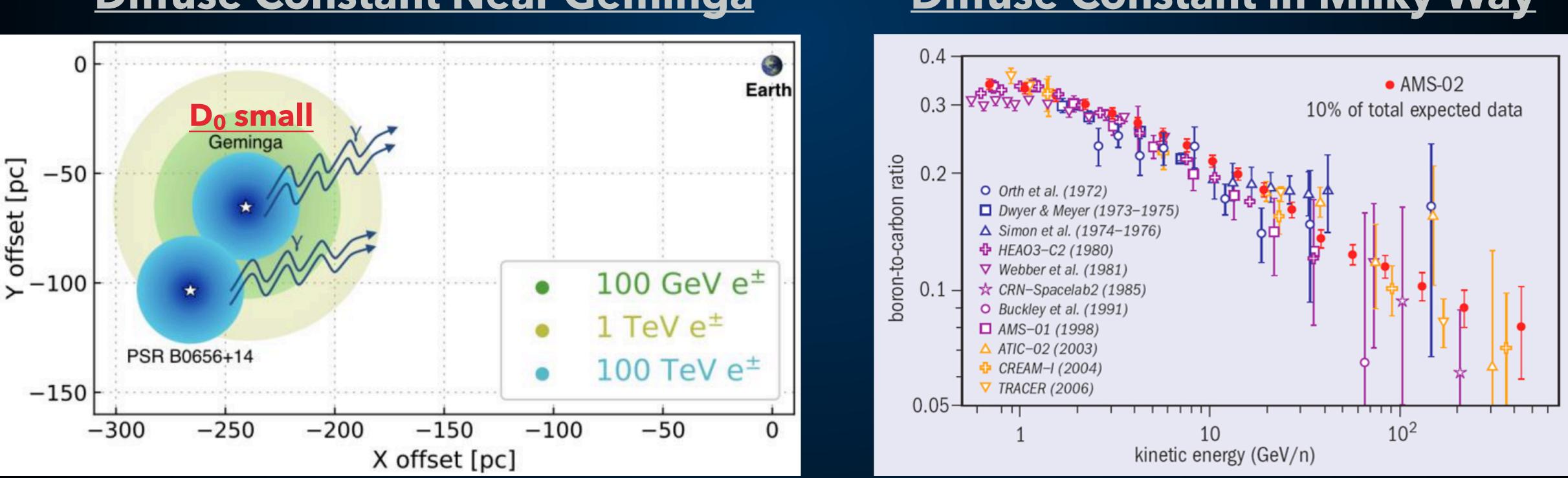

Linden & Buckman (PRL; 1707.01905)



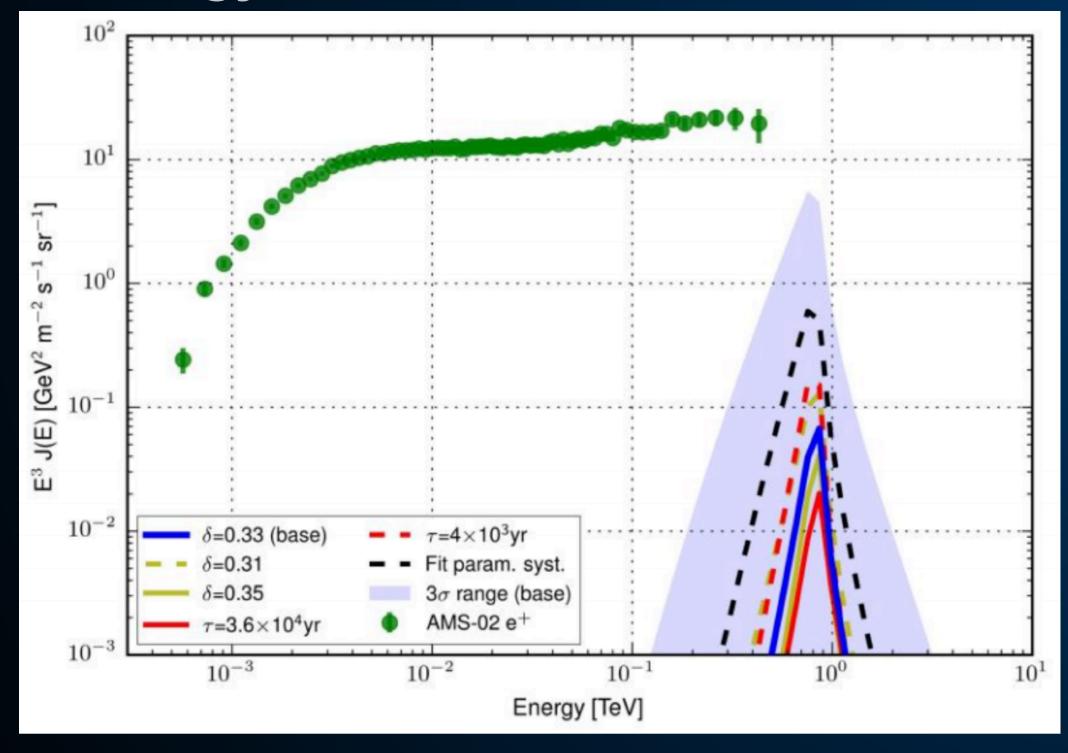
Implication II: The Galactic Center Pevatron


- **HESS observes 50 TeV diffuse emission from the** Galactic center.
- If hadronic, it is evidence for PeV proton acceleration.
- TeV halos explain the spectrum and intensity of this emission.

Hooper, Cholis & Linden (1705.09293)



What we want to know is the ave Geminga and Earth.

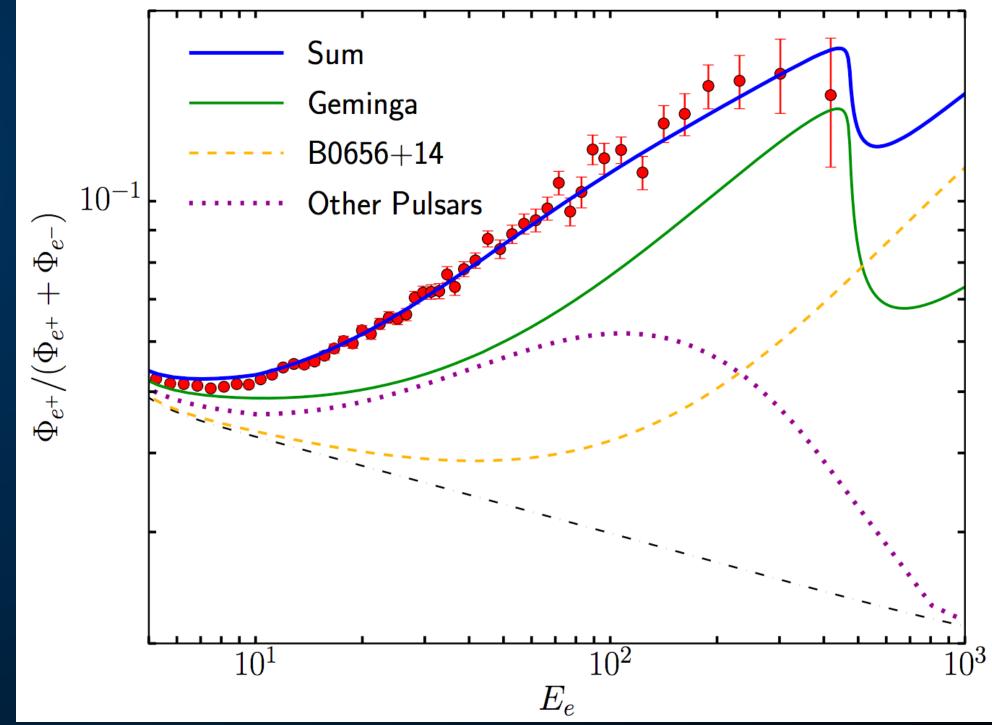

What we want to know is the average diffusion constant between

Diffuse Constant in Milky Way

Extrapolate Low Diffusion Constant UP to Earth

implies:

Low-Energy Positrons do not make it to Earth



HAWC Collaboration (Science; 1711.06223)

Extrapolate High Diffusion DOWN to Earth

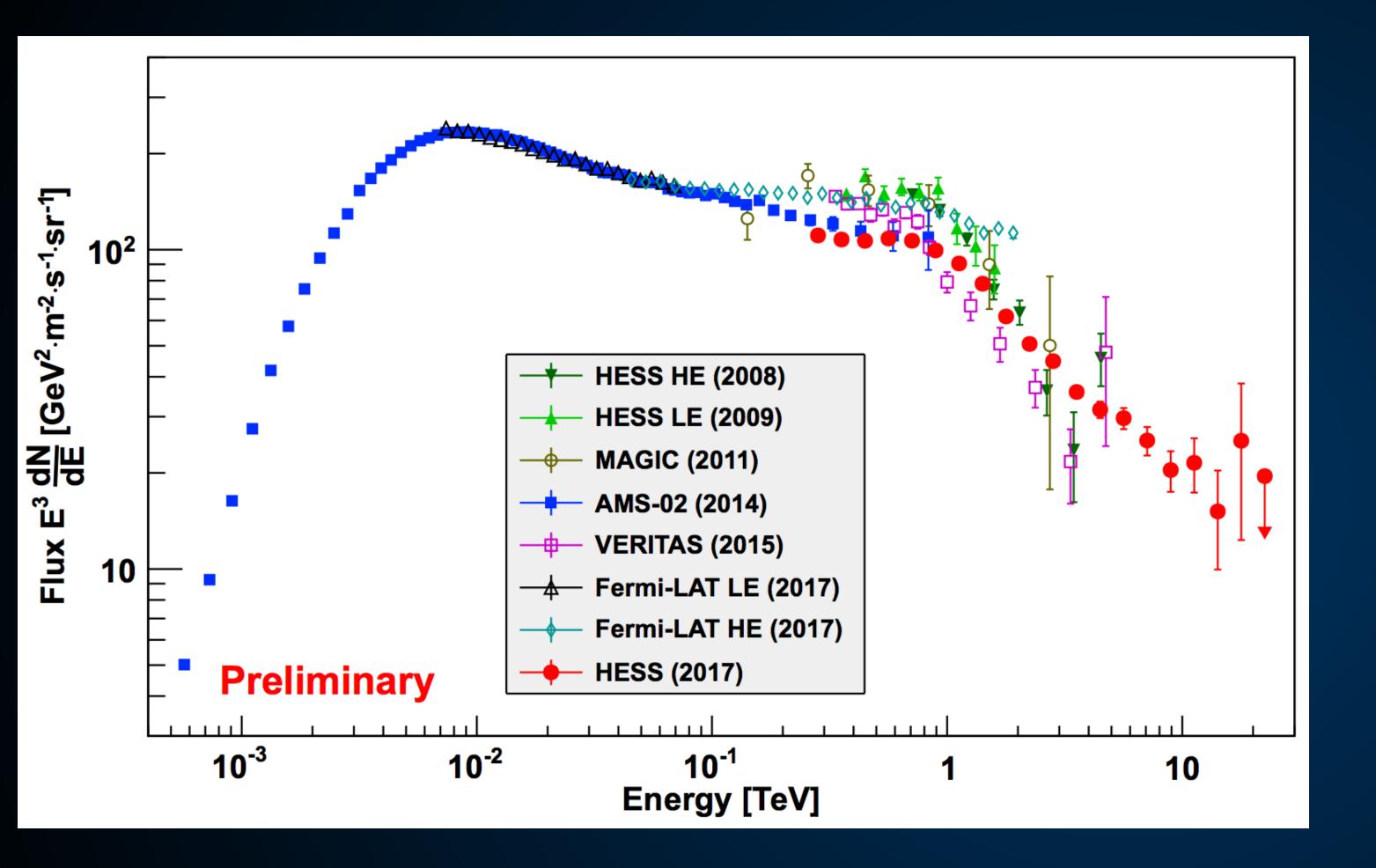
implies:

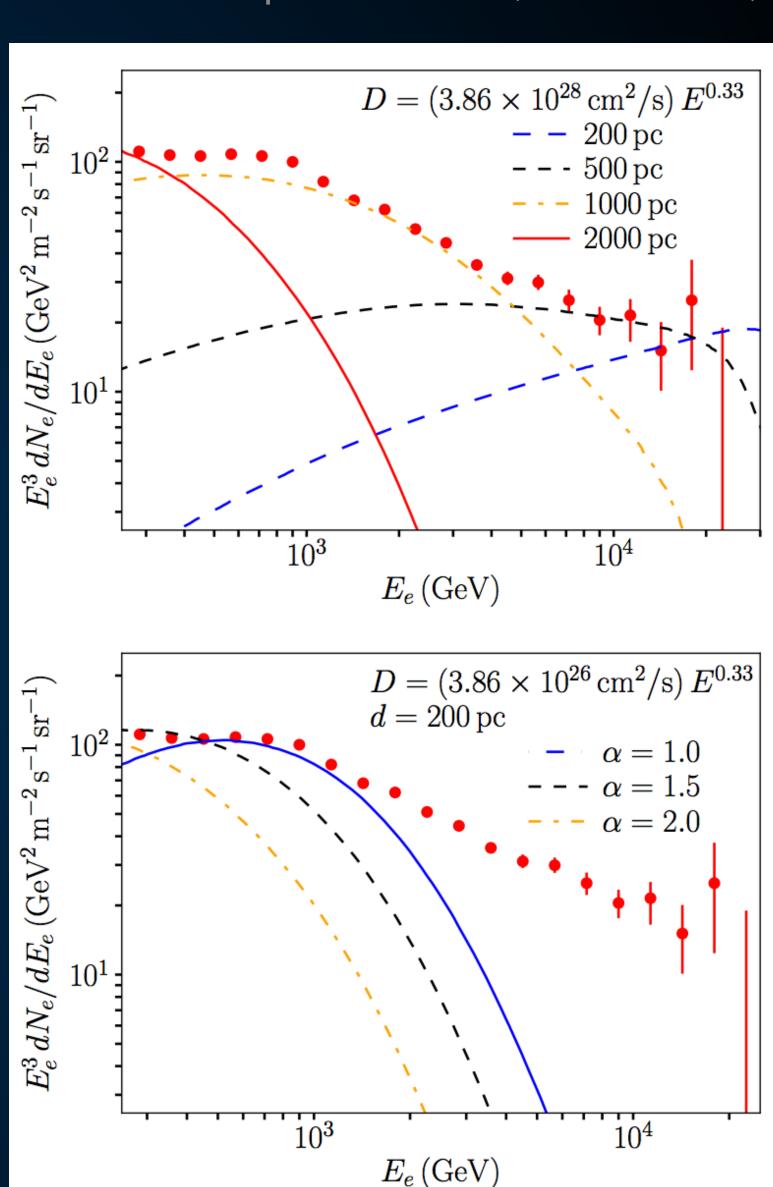
Low-Energy Positrons do make it to Earth

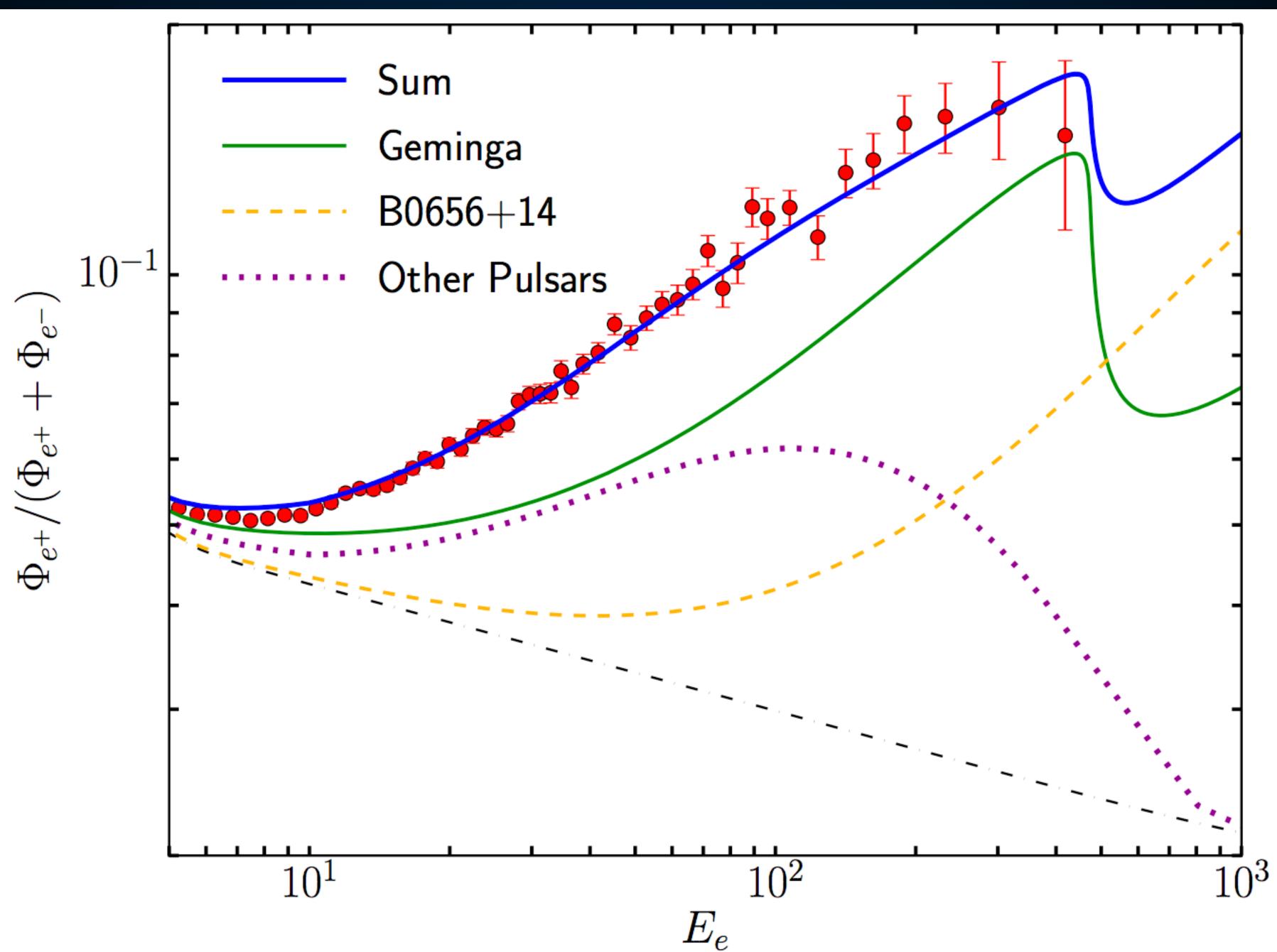
Hooper et al. (1702.08436)

Profumo et al. (1803.09731)

Fang et al. (1803.02640)







HESS Observations of 20 TeV electrons resolve this. If diffusion near Earth is low, then there is no source for these particles.

Hooper & Linden (1711.07482)

The Limited Assumptions in TeV Halo Observations

TeV Gamma-Ray Luminosity Roughly Proportional to Spindown Power

<u>= TeV halos explain the Milagro TeV Excess</u>

+ High Energy electrons trapped in TeV halos

<u>= Most HAWC Sources</u> are TeV halos

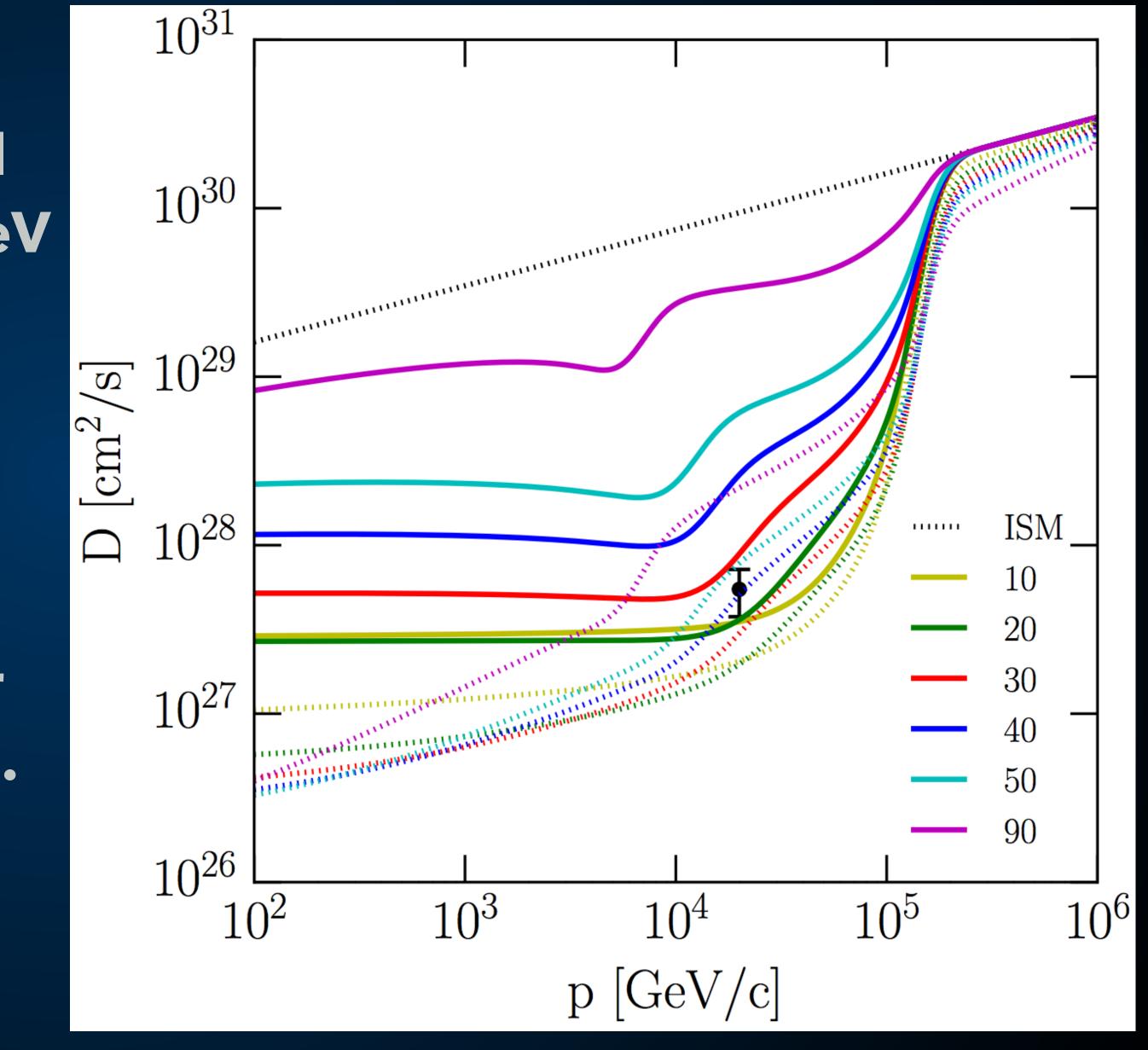
<u>= Pulsars explain the</u> positron excess

+ MSPs produce TeV halos

= New Population of Blind Search TeV MSPs

+ GC pulsars consistent with massive stars

<u>= TeV halos explain the</u> **HESS** pevatron


A First Model for TeV Halo Emission

 At presents, all results directly based on observations – no model for the low-diffusion constant in TeV halos.

 Cosmic-Ray Self Generated
 Turbulence appears capable of producing inhibited diffusion near pulsars, at least for young systems.

Stay Tuned!

Evoli et al. (TBS)

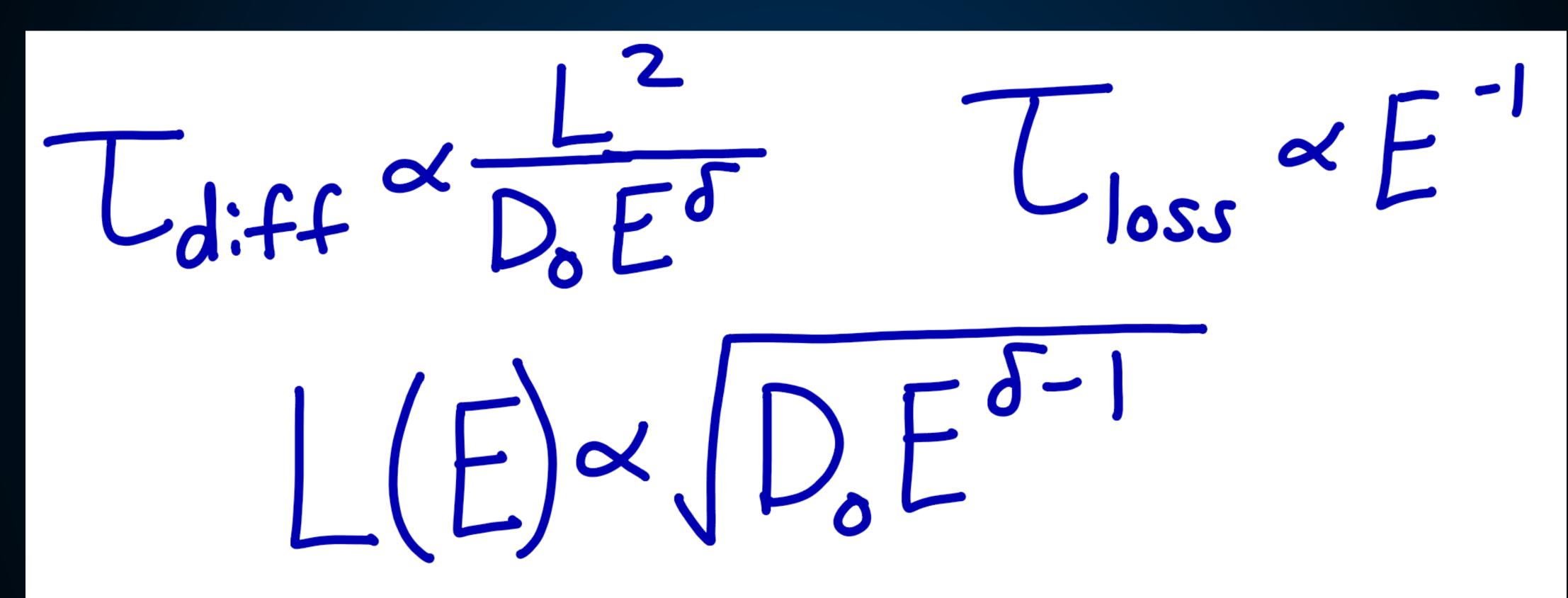
Conclusions (1/2)

TeV halos are a new dynamical object.

Have already observed ~20 objects; >100 inevitable

Simple extrapolations of observed systems imply: TeV halos dominate the TeV source number. TeV halos dominate Milky Way <u>diffuse emission</u>. TeV halos produce the <u>positron excess</u>.

Conclusions (2/2)

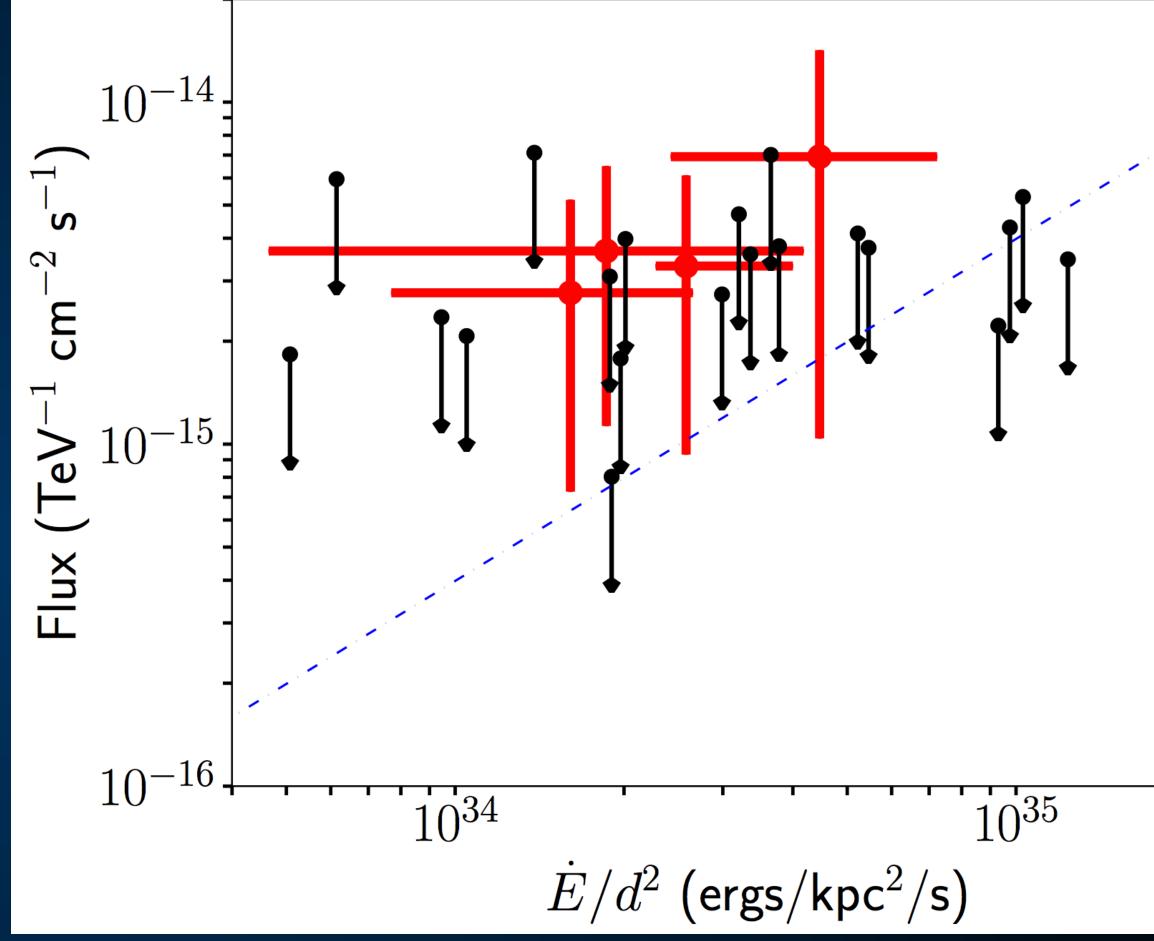

dynamics.

TeV halos provide the first evidence for significant inhomogeneities in Galactic cosmic-ray propagation – new insights into cosmic-ray observations (e.g. AMS-02).

TeV Halos will provide new insight into pulsar birth, death, and evolution, providing a new handle into the multi-wavelength study of neutron star

What about 100 GeV electrons?

Low Energy Electrons lose energy slower – and thus travel farther through the Milky Way


Additional Implications for MSPs

MSPs not expected to be bright enough to be individually detected.

 Stacked analysis of MSP population provides some (2-3σ) evidence for TeV halo emission from MSPs.

Would vastly increase the total Te latitudes.

Hooper & Linden (1803.08046)

Would vastly increase the total TeV halo population, especially at high

