The Galactic Center GeV Excess

Tim Linden

CCAPP Postdoctoral Fellow Center for Cosmology and Astro-Particle Physics The Ohio State University

American Physical Society

The Result

- an <u>excess</u> in gamma-ray emission in the Galactic center, gamma-ray sources.
- This excess is <u>defined</u> by:
 - rapidly at lower and higher energies.
 - 2.) A morphology that is spherically symmetric around the dynamical center of our galaxy, and which extends from 0.1° – 10° from the Galactic center.

 Observations by the <u>Fermi Large Area Telescope</u> have identified compared to the predicted emission from known astrophysical

1.) A spectrum which peaks sharply at an energy of ~2 GeV, falling off

The Fermi Large Area Telescope

 Space-based, pair-conversion telescope characterized by:

1.) Energy Range: 30 MeV – 1 TeV
2.) Effective Area: ~ 1 m²
3.) Field of View: 2 sr
4.) Energy Resolution: 10%
5.) Angular Resolution:

a.) 100 MeV: 10°
b.) 1 GeV: 0.8°
c.) 10 GeV: 0.1°

- **Gamma-Ray Emission Mechanisms** relativistic cosmic-ray particles.
- Requires a mechanism like 1st order Fermi acceleration
- Most reasonable source of cosmic-rays in the Milky Way are supernova shocks
- Shocks from pulsars, black holes, and magnetohydrodynamic turbulence are also possible contributors.

Gamma-Ray Emission is non-thermal and requires a source of

The Central Molecular Zone

• 400 pc x 80 pc • 10⁷ M_o of gas in Molecular Clouds

significant cosmic-ray component.

Molecular clouds heated to 50-100K by a

What Generates these Cosmic-Rays?

The Galactic center region is known to contain nearly every known cosmic-ray acceleration mechanism.

1.) Supernovae 2.) Pulsars 3.) Sgr A* 4.) Reacceleration 5.) Dark Matter Annihilation?

The Galactic Center Supernovae Multiwavelength observations indicate that the Galactic Center is a dense star-forming environment.

2-20% of the total Galactic Star Formation Rate is contained within the Central Molecular Zone.

Each SN injects 10⁵¹ erg into ISM, 10% in cosmic-rays

2-4% - ISOGAL Survey Immer et al. (2012) 2.5-5% - Young Stellar Objects Yusef-Zadeh et al. (2009) 5-10% - Infrared Flux Longmore et al. (2013) 10-20% - Wolf-Rayet Stars Rosslowe & Crowther (2014) 2% - Far-IR Flux Thompson et al. (2007) 2.5-6% - SN1a Schanne et al. (2007)

Arches Cluster Θ_{GC}=0.25°,

Galactic Center Pulsars

The Galactic Center is expected to host a significant population of both young pulsars (due to its high SFR), and millisecond pulsars (in part from the disruption of Globular Clusters).

Over the lifetime of a young (recycled) pulsar, ~10⁵⁰ erg of energy our released, primarily in the form of relativistic e⁺e⁻ pairs.

Chandra Observes > 9000 point sources from the inner 1° x 0.5°

The Sgr A* Source

HESS has detected diffuse gamma-ray emission at energies ~100 TeV.

The emission profile is indicative of diffusion from the central BH.

Dark Matter Annihilation?

WIMPs are currently among the most wellmotivated dark matter models.

WIMP annihilation naturally produces a significant cosmic-ray (and gamma-ray) flux.

Dark Matter structure simulations uniformly predict that the GC is the brightest source of WIMP annihilations.

Standard scenarios predict the flux from the GC exceeds dSphs by a factor of ~100 – 1000.

Reacceleration

More than 80 filamentary structures identified in the central 2° x 1°.

The best astrophysical explanation involves significant re-acceleration via magnetic reconnection (Lesch & Riech 1992, Lieb et al. (2004).

Strong magnetic fields may propagate through the Galactic center, significantly re-accelerating the cosmic-ray population.

Yusef-Zadeh et al. (2004)

	2
	-
	-
	-
	~
	-
	-
B	-15 1
	2
	-
	27
	-
-1.5	

Non-Thermal Emission (Observables) Fermi Bubbles

WMAP/PLANCK Haze

GeV Excess

Integral 511 keV Excess

Non-Thermal Emission (Observables)

Non-Thermal Emission (Observables)

Fermi Bubbles

WMAP/PLANCK Haze

Integral 511 keV Excess

GeV Excess

This:

the Galactic plane. (b) Provides a large field of view for studies of GC emission. (c)Implies that propagation is important!

The photon excesses extend very far from the central molecular region!

(a)Indicates the relative power of Galactic center accelerators, compared to

Start with a source of relativistic cosmic-rays

Start with a source of relativistic cosmic-rays

$$\vec{r},p) + \vec{\nabla} \cdot (D_{xx}\vec{\nabla}\psi - \vec{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi - \frac{\partial}{\partial p}\left[\dot{p}\psi - \frac{p}{3}(\vec{\nabla}\cdot\vec{V})\psi\right] - \frac{1}{\tau_f}\psi - \frac{1}{\tau_r}\psi$$

Solved Numerically: e.g. Galprop

Start with a source of relativistic cosmic-rays

Gas/ISRF

$$\vec{r},p) + \vec{\nabla} \cdot (D_{xx}\vec{\nabla}\psi - \vec{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi - \frac{\partial}{\partial p}\left[\dot{p}\psi - \frac{p}{3}(\vec{\nabla}\cdot\vec{V})\psi\right] - \frac{1}{\tau_f}\psi - \frac{1}{\tau_r}\psi$$

Solved Numerically: e.g. Galprop

Start with a source of relativistic cosmic-rays

Gas/ISRF

$$\vec{r},p) + \vec{\nabla} \cdot (D_{xx}\vec{\nabla}\psi - \vec{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi - \frac{\partial}{\partial p}\left[\dot{p}\psi - \frac{p}{3}(\vec{\nabla}\cdot\vec{V})\psi\right] - \frac{1}{\tau_f}\psi - \frac{1}{\tau_r}\psi$$

Solved Numerically: e.g. Galprop

The Energetics of the Galactic Center

Total Gamma-Ray Flux (>1 GeV) in inner 1° is **1.1 x 10⁻⁹ erg cm² s⁻¹**

Approximately half of this emission is produced along the line of sight towards the GC, and thus we approximate the total gamma-ray luminosity of the central one degree to be **5 x 10³⁶ erg s⁻¹**

Fermi-LAT Observations of the Galactic Center

Total Gamma-Ray Flux (>1 GeV) in inner 1° is 1.1 x 10⁻⁹ erg cm² s⁻¹

Approximately half of this emission is produced along the line of sight towards the GC, and thus we approximate the total gamma-ray luminosity of the central one degree to be 5 x 10³⁶ erg s⁻¹

provides an energy flux of 1.3×10^{40} erg s⁻¹.

s⁻¹), filled with Hydrogen gas at density 100 cm⁻², this will produce a total gamma-ray emission:

Understanding the Gamma-Ray Source with Energetics Supernovae:

- A Supernovae produces ~ 10^{51} erg of energy.
- ~10% to CR protons.
- Assuming 1 Galactic center SN every 250 years (10% the Galactic Rate), this
- If these cosmic-rays are trapped for 10 kyr in a 100 pc box ($D_0 = 5 \times 10^{28} \text{ cm}^2$
 - 6.7 x 10^{37} erg s⁻¹

Understanding the Gamma-Ray Source with Energetics Pulsars: Fermi-LAT Observations of the Galactic Center

Total Gamma-Ray Flux (>1 GeV) in inner 1° is 1.1 x 10⁻⁹ erg cm² s⁻¹

Approximately half of this emission is produced along the line of sight towards the GC, and thus we approximate the total gamma-ray luminosity of the central one degree to be 5 x 10³⁶ erg s⁻¹

MSPs observed in the galactic field are fit by a population with a mean gamma-ray flux of 3 x **10³⁴ erg s⁻¹.** (Hooper & Mohlabeng 2015)

stellar mass ~ $5 \times 10^7 M_o$).

For the 1 x 10^9 M_o of stars formed in the inner degree of the Milky Way, we get:

Given the population of 129 MSPs among 124 globular clusters (with a total

7.7 x 10^{37} erg s⁻¹

Understanding the Gamma-Ray Source with Energetics Sgr A* Fermi-LAT Observations of the Galactic Center

Total Gamma-Ray Flux (>1 GeV) in inner 1° is 1.1 x 10⁻⁹ erg cm² s⁻¹

Approximately half of this emission is produced along the line of sight towards the GC, and thus we approximate the total gamma-ray luminosity of the central one degree to be 5 x 10³⁶ erg s⁻¹

A tidal disruption event releases ~10⁴⁵ erg s⁻¹ for a period of ~0.2 yr.

Sgr A* is expected to produce a tidal disruption event every $\sim 10^5$ yr, producing a time-averaged energy output of 2×10^{39} erg s⁻¹.

If these CRs are leptonic, and the electrons are trapped in a region with a 40 eV cm⁻³ ISRF and a 200 μ G B-field the gamma-ray flux from inverse Compton scattering is: $7.0 \times 10^{37} \text{ erg s}^{-1}$

Understanding the Gamma-Ray Source with Energetics Dark Matter Fermi-LAT Observations of the Galactic Center

Total Gamma-Ray Flux (>1 GeV) in inner 1° is 1.1 x 10⁻⁹ erg cm² s⁻¹

Approximately half of this emission is produced along the line of sight towards the GC, and thus we approximate the total gamma-ray luminosity of the central one degree to be 5 x 10³⁶ erg s⁻¹

For a 35 GeV dark matter particle annihilating at the thermal cross-section to bb, and a slightly adiabatically contracted r^{-1.35} density profile.

a gamma-ray flux of:

The dark matter annihilation rate is 8.6 x 10³⁸ ann s⁻¹, which produces

6.9 x 10^{36} erg s⁻¹ V

Theorist Conclusion #1: Every Model is Correct

Theorist Conclusion #2: More Information is Needed

The Morphology of the Signal **INNER GALAXY GALACTIC CENTER** Mask galactic plane (e.g. |b| > 1°), and consider 40° x 40° box Bright point sources masked at 2° • Background systematics controlled Box around the GC (10° x 10°) Include and model all point sources **Bright Signal**

- intensity of each source.

• In Both Cases: Use likelihood analysis to calculate the spectrum and

The Morphology of the Gamma-Ray Signal

Fitting the Background Templates

In most recent analyses, fits are calculated independently in numerous energy bins spanning from ~100 MeV -- 100 GeV:

$$\oint_{\text{model}} (l, b, E) = K_{\Pi_0} (l, b, E) + K_{\mu_0} (l, b, E)$$

$$\oint_{i} (E) = K_{i}(E).$$

 $\begin{array}{l} & (l,b,E) + K_{ICS} \phi_{ICS}(l,b,E) + \\ & (l,b,E) + K_{ICS} \phi_{ICS}(l,b,E) + \\ & (l,b,E) + \sum_{VPS} K_{PS,i} \phi_{PS,i}(l,b,E) \\ \end{array}$

 $\int_{\mathcal{L}} \int_{\mathcal{L}} \frac{\partial (\mathcal{L}, \mathcal{L}, \mathcal{E})}{\partial \mathcal{L}} d\mathcal{L} d\mathcal{L}$

Untuned Background Templates Option 1: Gas Model

- Use a simple model for the integrated gas density over the line of sight.
- **Completely independent of the gamma-ray data.**
- Hadronic interactions are the primary source of astrophysical gamma-rays
- No sensitivity to a radially variable cosmic-ray density
- Extremely rudimentary analytic model.

Hooper & Goodenough (2010), Hooper & Linden (2011)

Untuned Background Templates 0-1.5 kpc 15° **Option 2: Fermi Diffuse Model** -13

Template fit to the full sky, normalizing observed gas maps in cylindrical rings.

Diffuse model has been fit to the full sky, providing a nuanced statistical fit to the data.

Black box – Can not independently vary emission mechanisms in the fit.

Not calibrated for the Galactic center.

Abazajian & Kaplinghat (2010), Abazajian et al. (2014), Daylan et al. (2016)

Untuned Background Templates **Option 3: Galprop**

Utilize computational tools to produce a physical model of the Galactic center, and compare to data.

Can easily customize model for the Galactic center.

Not clear what the physical parameters of Galactic center diffusion are.

Grids are necessarily coarse compared to data.

Calore et al. (2014)

Picking an Excess Model

$$\rho_{\rm NFW} = \left(\frac{\mathbf{r}}{\mathbf{r}_{\rm s}}\right)^{-\gamma} \left(\mathbf{1} + \frac{\mathbf{r}}{\mathbf{r}_{\rm s}}\right)^{-\gamma} \left(\mathbf{r}_{\rm s}^{-\gamma} \left(\mathbf{r}_{\rm s}^{-\gamma} + \frac{\mathbf{r}}{\mathbf{r}_{\rm s}}\right)^{-\gamma} \left(\mathbf$$

We employ an analytical model, known as the "generalized NFW Profile" which provides a fit to the observed dark matter density distribution.

In the standard NFW scenario, $\gamma = 1$

Navarro, Frenk, White (1996) Springel et al. (2008, 0809.0898)

Utilizing different models for removing astrophysical and point source foregrounds. Multiple studies have consistently observed a gamma-ray excess.

The statistical significance of the excess is ~30-60 σ , depending on the ROI and photon selection employed.

Goodenough & Hooper (2009, 0910.2998) Hooper & Goodenough (2010, 1010.2752) Hooper & Linden (2011, 1110.0006) Abazajian & Kaplinghat (2012, 1207.6047) Gordon & Macias (2013, 1306.5725) Gordon & Macias (2013, 1312.6671) Abazajian et al. (2014, 1402.4090) Daylan et al. (2014, 1402.6703) Calore et al. (2014, 1409.0042)

Abazajian et al. (2014, 1410.6168) Bartels et al. (2015, 1506.05104) Lee et al. (2015, 1506.05124) Gaggero et al. (2015, 1507.06129) Carlson et al. (2015, 1510.04698) The Fermi-LAT Collaboration (2015, 1511.02938) Yang & Aharonian (2016, 1602.06764) Carlson et al. (2016, 1603.06584) Linden et al. (2016, 1604.01026) Horiuichi et al. (2016, 1604.01402)

Daylan et al. (2014)

Fermi Diffuse Models

The excess has an unusual spectrum - highly peaked at an energy of ~2 GeV.

This spectrum is significantly harder than expected from astrophysical diffuse emission.

 $E^2 dN/dE \, [\text{GeV}\,\text{cm}^{-2}\text{s}^{-1}\text{sr}]$

Galprop Models

Daylan et al. (2014)

0.1° – 10° from the Galactic Center.

Calore et al. (2014b)

The GeV excess spherically symmetric, and is statistically significant from

<u>These are the three resilient features of the GeV Excess:</u> 1.) Hard Gamma-Ray Spectrum peaking at ~2 GeV 2.) Spherically Symmetric Emission Morphology 3.) Extension to $>10^{\circ}$ from the GC.

<u>Upcoming Talks will Model this with:</u> 1.) Dark Matter annihilation 2.) Millisecond Pulsars 3.) Leptonic Outbursts from Sgr A*

An Excess Compared to What?

In most recent analyses, fits are calculated independently in numerous energy bins spanning from ~100 MeV -- 100 GeV:

$$\oint_{\text{model}} (l, b, E) = K_{\Pi_0} (l, b, E) + K_{\mu_0} (l, b, E)$$

$$\oint_{i} (E) = K_{i}(E).$$

 $f_{em} (l, b, E) + K_{ICS} (l, b, E) + K_{ICS} (l, b, E) + (l, b, E) + K_{ICS} (l, b, E) + \sum_{WPS} (l, b$

 $\int_{\mathcal{L}} \int_{\mathcal{L}} (\mathcal{L}, \mathcal{L}, \mathcal{E}) db d\ell$

An Excess Compared to What? Cosmic-Ray Propagation Codes (e.g. Galprop), generally utilize a cosmic-ray injection rate at the Galactic center that is identically 0.

These models were not produced to study the very center of the Galaxy!

Results from these cosmic-ray propagation codes are used in many analyses of the Galactic center region.

> Carlson et al. (2016a, 2016b) 1510.04698 1603.06584

The Solution

Solution: Add a new cosmic-ray injection morphology tracing the molecular gas density.

Observationally Resilient: Several tracers of molecular gas are sensitive to the galactic center region.

Theoretically Motivated: Molecular Gas is the seed of star formation, the Schmidt Law gives: $\Sigma_{\rm SFR} \propto \Sigma_{\rm Gas}^{1.4\pm.15}$

 $Q_{\rm CR}(\vec{r}) \propto$

Specifically we inject a fraction of cosmic-rays ($0 < f_{H2} < 1$) following:

$$\begin{cases} 0 & \rho_{\rm H2} \le \rho_s \\ \rho_{\rm H2}^{n_s} & \rho_{\rm H2} > \rho_s \end{cases}$$

1510.04698

he Solution

Two features leap out immediately:

1.) Spiral Arms 2.) A bright bar in the Galactic Center

The Solution

The cosmic-ray injection rate now matches observational constraints.

Galactocentric Radius [kpc]

Simulations!

Add the new cosmic-ray injection models into Galprop to produce a new steady-state cosmic-ray distribution.

Parameter	Units	Canonical	Mod A	Description
D_0	$\mathrm{cm}^2~\mathrm{s}^{-1}$	7.2×10^{28}	5.0×10^{28}	Diffusion constant at $\mathcal{R} = 4$ GV
δ	_	0.33	0.33	Index of diffusion constant energy depend
Zhalo	kpc	3	4	Half-height of diffusion halo
$R_{ m halo}$	kpc	20	20	Radius diffusion halo
v_a	$\rm km~s^{-1}$	35	32.7	Alfvén velocity
dv/dz	$\rm km \ s^{-1} \ kpc^{-1}$	0	50	Vertical convection gradient
$\alpha_{\rm p}$	-	1.88(2.39)	1.88 (2.47)	p injection index below (above) $\mathcal{R} = 11.5$
α_{e}	_	1.6(2.42)	1.6(2.43)	e^- injection index below (above) $\mathcal{R} = 2$ (
Source	_	SNR	SNR	Distribution of $(1 - f_{H2})$ primary sources
$f_{\rm H2}$	_	.20	N/A	Fraction of sources in star formation mod
n_s	_	1.5	N/A	Schmidt Index [*]
$ ho_{ m c}$	cm^{-3}	0.1	N/A	Critical H_2 density for star formation [*]
B_0	μG	7.2	9.0	Local $(r = R_{\odot})$ magnetic field strength
r_B, z_B	kpc	5, 1	5, 2	Scaling radius and height for magnetic fie
ISRF	_	(1.0, .86, .86)	(1.0, .86, .86)	Relative CMB, Optical, FIR density
dx, dy	kpc	0.5, 0.5	1 (2D)	x, y (3D) or radial (2D) cosmic-ray grid s
dz	kpc	0.125	.1	z-axis cosmic-ray grid spacing

New cosmic ray injection distribution produces a sharply peaked <u>steady</u> state cosmic-ray density

A Better fit to the Gamma-Ray Sky

1.) Adding a cosmic-ray injection component tracing f_{H2} improves the full-sky fit to the gamma-ray data.

2.) The best fit value over the full sky is $f_{H2} = 0.25$

3.) Technique will become more powerful with the introduction of3D gas and dust maps in the near future.

Application to the Galactic Center

Effect on the GC Excess

However, the best global fit is $f_{H2} = 0.1$, with a GC excess intensity that decreases by only ~30%.

Increasing the value of f_{H2} decreases the intensity of the gamma-ray excess.

Effect on the Excess Morphology

The morphology of the excess is also degenerate with f_{H2} .

As f_{H2} is increased, the best-fit morphology becomes stretched perpendicular to the galactic plane.

consistent with the data.

However, marginalized over all values of f_{H2} , the standard NFW template is still

Analysis in the Galactic Center

In this smaller region, the excess remains resilient to changes in the diffuse emission modeling.

The removal of the large side-bands in the ROI is more important than the inclusion of the GC.

 $f_{H2} = 0.15$ still favored by the data, especially in the case of no NFW component.

The Galactic Center Deficit?

The best-fit value of f_{H2} is smaller in the Galactic center, compared to its best fit value in the Milky Way....

The Galactic Center Deficit?

leads to an excess template which is negative at low energies.

Forcing the value of f_{H2} to fit the best-fit value from the full galaxy

Advection and Convection in the Galactic Center

Crocker et al. (2011) demonstrated that the break in the GC synchrotron spectrum is best fit in the regime with:

a.) Large Magnetic Fields b.) Large Convective Winds

Very different from typical Galprop diffusion scenario.

The Low Energy Spectrum

dataset - and also coincides better with multi wavelength data.

Applying strong convective winds to the diffuse emission model fixes the low-energy over subtraction.

The intensity of the excess near the spectral peak also increases, up to ~50% of its nominal value.

The model produces a significantly better fit to the gamma-ray sky

<u>Several recent papers have come</u> <u>to similar conclusions:</u>

Ajello et al. (2015) find that the gamma-ray data near the galactic center is fit when the normalization of the inverse-Compton scattering component is highly peaked in the inner kpc.

<u>Several recent papers have come</u> <u>to similar conclusions:</u>

Gaggero et al. (2015) find that the gamma-ray data is better fit when a spherically symmetric gaussian flux is added to the gamma-ray data near the Galactic center.

<u>Several recent papers have come</u> <u>to similar conclusions:</u>

Macias et al. (2016) find that the gamma-ray data is better fit when a template tracing the nuclear stellar bulge is added into the gamma-ray model.

<u>Several recent papers have come</u> <u>to similar conclusions:</u>

The Fermi-LAT collaboration has shown that the gamma-ray data is better fit when a new ICS component tracing the CMZ is added to the gamma-ray data.

The majority of these analyses (with the exception of Macias et al.) still find a galactic center excess template (following an NFW profile) to provide a statistically significant improvement in the fit to the gamma-ray data.

The remainder of the talks in this session will discuss interpretations of this excess.

Observation

The Implications for WIMP Dark Matter

The Density of Dark Matter is similar to the density of protons in our universe.

which in QFT must correspond to some force.

This requires either significant fine tuning, or a dynamical interaction -

WIMPS in Thermal Equilibrium

This guaranteed cross-section is unique to indirect detection.

A particle with a weak interaction crosssection and a mass on the weak scale naturally obtains the correct relic abundance through thermal freeze-out in the Early Universe.

$$\left(\frac{\Omega_{\chi}}{0.2}\right) \simeq \frac{x_{\text{f.o.}}}{20} \left(\frac{10^{-8} \text{ GeV}^{-2}}{\sigma}\right)$$

$$\langle v \rangle \sim 10^{-8} \,\mathrm{GeV^{-2}} \left(3 \times 10^{-28} \,\mathrm{GeV^2} \,\mathrm{cm^2} \right) \ 10^{10} \ \frac{\mathrm{cm}}{\mathrm{s}} = 3 \times 10^{-26} \ \frac{\mathrm{cm^3}}{\mathrm{s}}$$

If dark matter had a thermal cross-section in the early universe, it should still have an observable cross-section today.

spectrum can be calculated from known physics.

Once a standard model final state is selected, the resulting photon

For WIMP scale dark matter, photon energy peaks in the GeV range.

The Galactic Center as an Indirect Detection Target

Both observational data and simulations indicate that the Galactic Center should produce the highest flux of dark matter annihilation products of any location in the sky.

Recent work has provided the first direct evidence for dark matter within the Milky Way solar circle.

The WIMP Interpretation of the Galactic Center Excess

The WIMP Interpretation of the Galactic Center Excess

the necessary thermal relic cross-section.

And intriguingly, the necessary dark matter cross-section is similar to

Particle Physics Models Exist...

Chan (1607.02246) Jia (1607.00737) Barrau et al. (1606.08031) Huang et al. (1605.09018) Cui et al. (1605.08138) Krauss et al. (1605.05327) Kumar et al. (1605.00611) Biswas et al. (1604.06566) Sage et al. (1604.04589) Choquette et al. (1604.01039) Cuoco et al. (1603.08228) Chao et al. (1602.05192) Horiuchi et al. (1602.04788) Hektor et al. (1602.00004) Freytsis et al. (1601.07556) Kim et al. (1601.05089) Huang et al. (1512.08992) Kulkami et al. (1512.06836) Tang et al. (1512.02899) Cox et al. (1512.00471) Cai et al. (1511.09247) Agrawal et al. (1511.06293) Duerr et al. (1510.07562) Drozd et al. (1510.07053) Arcadi et al. (1510.02297) Williams (1510.00714) Cai & Spray (1509.08481) Freese et al. (1509.05076) Bhattacharya et al. (1509.03665) Algeri et al. (1509.01010) Fox & Tucker-Smith (1509.00499) Dutta et al. (1509.05989) Liu et al. (1508.05716) Berlin et al. (1508.05390) Fan et al. (1507.06993) Hektor et al. (1507.05096) Achterbeg et al. (1507.04644) Biswas et al. (1507.04543)

Butter et al. (1507.02288) Mondal et al. (1507.01793) Cao et al. (1506.06471) Banik et al. (1506.05665) lpek (1505.07826) Buchmueller et al. (1505.07826) Balazs et al. (1505.06758) Medina (1505.05565) Kim et al. (1505.04620) Ko et al. (1504.06944) Ko & Tang (1504.03908) Ghorbani & Ghorbani (1504.03610) Fortes et al. (1503.08220) Cline et al. (1503.08213) Rajaraman et al. (1503.05919) Bi et al. (1503.03749) Kopp et al. (1503.02669) Elor et al. (1503.01773) Gherghetta et al. (1502.07173) Berlin et al. (1502.06000) Achterberg et al. (1502.05703) Modak et al. (1502.05682) Guo et al. (1502.00508) Chen & Nomura (1501.07413) Kozaczuk & Martin (1501.07275) Berlin et al. (1501.03496) Kaplinghat et al. (1501.03507) <u>Alves et al. (1501.03490)</u> Biswas et al. (1501.02666) Biswas et al. (1501.02666) Ghorbani & Ghorbani (1501.00206) Cerdeno et al. (1501.01296) Liu et al. (1412.1485) Hooper (1411.4079) Arcadi et al. (1411.2985) Cheung et al. (1411.2619) Agrawal et al. (1411.2592) Kile et al. (1411.1407)

Buckley et al. (1410.6497) Heikinheimo & Spethmann (1410.4842) Freytsis et al. (1410.3818) Yu et al. (1410.3347) Cao et al. (1410.3239) Guo et al. (1409.7864) Yu (1409.3227) Cahill-Rowley et al. (1409.1573) Banik & Majumdar (1408.5795) Bell et al. (1408.5142) Ghorbani (1408.4929) Okada & Seto (1408.2583) Frank & Mondal (1408.2223) Baek et al. (1407.6588) Tang (1407.5492) Balazs & Li (1407.0174) Huang et al. (1407.0038) McDermott (1406.6408) Cheung et al. (1406.6372) Arina et al. (1406.5542) Chang & Ng (1406.4601) Wang & Han (1406.3598) Cline et al. (1405.7691) Berlin et al. (1405.5204) Mondal & Basak (1405.4877) Martin et al. (1405.0272) Ghosh et al. (1405.0206) Abdullah et al. (1404.5503) Park & Tang (1404.5257) Cerdeno et al. (1404.2572) Izaguirre et al. (1404.2018) Agrawal et al. (1404.1373) Berlin et al. (1404.0022) Alves et al. (1403.5027) Finkbeiner & Weiner (1402.6671) Boehm et al. (1401.6458) Kopp et al. (1401.6457) Modak et al. (1312.7488) Alves et al. (1312.5281)

Alves et al. (1312.5281) Fortes et al. (1312.2837) Banik et al. (1311.0126) Arhrib et al. (1310.0358) Kelso et al. (1308.6630) Kozaczuk et al. (1308.5705) Kumar (1308.4513) Demir et al. (1308.1203) Buckley et al. (1307.3561) Cline et al. (1306.4710) Cannoni et al. (1205.1709) An et al. (1110.1366) Buckley et al. (1106.3583) Boucenna et al. (1106.3368) Ellis et al. (1106.0768) Cheung et al. (1104.5329) Marshall et al. (1102.0492) Abada et al. (1101.0365) Tytgat (1012.0576) Logan (1010.4214) Barger et al. (1008.1796) Raklev et al. (0911.1986)

Simple Particle Physics Models Also Work

Model	DM	Mediator	Interactions	Elastic	Near Future Reach?	
Number				Scattering	Direct	LHC
1	Dirac Fermion	Spin-0	$ar{\chi}\gamma^5\chi,ar{f}f$	$\sigma_{\rm SI} \sim (q/2m_\chi)^2 \; ({\rm scalar})$	No	Maybe
1	Majorana Fermion	Spin-0	$ar{\chi}\gamma^5\chi,ar{f}f$	$\sigma_{ m SI} \sim (q/2m_\chi)^2 ~(m scalar)$	No	Maybe
2	Dirac Fermion	Spin-0	$=ar{\chi}\gamma^5\chi,ar{f}\gamma^5f$	$\sigma_{ m SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe
2	Majorana Fermion	Spin-0	$=ar{\chi}\gamma^5\chi,ar{f}\gamma^5f$	$\sigma_{ m SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe
3	Dirac Fermion	Spin-1	$=ar{\chi}\gamma^\mu\chi,ar{b}\gamma_\mu b$	$\sigma_{\rm SI} \sim {\rm loop} \ ({\rm vector})$	Yes	Maybe
4	Dirac Fermion	Spin-1	$ar{\chi}\gamma^\mu\chi,ar{f}\gamma_\mu\gamma^5 f$	$\sigma_{\rm SD} \sim (q/2m_n)^2 \text{ or} \\ \sigma_{\rm SD} \sim (q/2m_\chi)^2$	Never	Maybe
5	Dirac Fermion	Spin-1	$ig ar{\chi}\gamma^\mu\gamma^5\chi,ar{f}\gamma_\mu\gamma^5f$	$\sigma_{ m SD}\sim 1$	Yes	Maybe
5	Majorana Fermion	Spin-1	$ar{\chi}\gamma^{\mu}\gamma^5\chi,ar{f}\gamma_{\mu}\gamma^5f$	$\sigma_{\rm SD} \sim 1$	Yes	Maybe
6	Complex Scalar	Spin-0	$\phi^{\dagger}\phi,ar{f}\gamma^{5}f$	$\sigma_{\rm SD} \sim (q/2m_n)^2$	No	Maybe
6	Real Scalar	Spin-0	$\phi^2, ar{f} \gamma^5 f$	$\sigma_{\rm SD} \sim (q/2m_n)^2$	No	Maybe
6	Complex Vector	Spin-0	$B^{\dagger}_{\mu}B^{\mu},ar{f}\gamma^{5}f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe
6	Real Vector	Spin-0	$B_{\mu}B^{\mu}, ar{f}\gamma^5 f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe
7	Dirac Fermion	Spin-0 $(t-ch.)$	$ar{\chi}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim {\rm loop} \ ({\rm vector})$	Yes	Yes
7	Dirac Fermion	Spin-1 $(t-ch.)$	$ar{\chi}\gamma^\mu(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim { m loop} \ ({ m vector})$	Yes	Yes
8	Complex Vector	Spin-1/2 (t-ch.)	$X^{\dagger}_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$	$\sigma_{ m SI} \sim m loop~(vector)$	Yes	Yes
8	Real Vector	Spin-1/2 (t-ch.)	$X_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim {\rm loop} \ ({\rm vector})$	Yes	Yes

About 2/3 of the simple tree level diagrams compatible with the excess have not yet been ruled out by other experiments...

Priors for a Dark Matter Discovery Myriad Evidence Suggests Dark Matter exists, and should have nongravitational interactions:

We shouldn't think of dark matter searches as a "needle in a dark matter can be feasibly observed.

haystack". Our theoretical priors should lead us to bet that particle

Conversely, as a pessimist....

If astrophysical models were proven to produce the entirety of the Galactic center signal, nearly the full WIMP parameter space could be ruled out.

Not a Conclusion Yet...

1.) The Galactic Center is a complex, but exciting environment. Several significant excesses are tied to the dynamics of the Galactic center environment.

2.) The GeV excess is a robust component of the Galactic center emission profile. At present, no models have successfully eliminated the excess.

3.) Improving our diffuse emission modeling is imperative to understanding the properties of the excess.

Extra Slides

Effect on the Excess Spectrum

Changing the background model has a significant effect on the spectrum of the gamma-ray excess.

The spectrum becomes extremely hard as f_{H2} is increased, most likely indicating that the GCE template is picking up mismodeling of some residual.

Waxing Philosophical....

The lack of cosmic-ray injection in the GC should still be slightly disturbing. Especially when we try to answer the question: "excess compared to what?"

Our models indicate a degeneracy between cosmic-ray injection and the Galactic center excess template tracing an NFW profile. However, at present the best fit models still include a significant NFW component.

Galactic center excess is resilient....

IG
A Better fit to the Gamma-Ray Sky

Fits are significantly improved, in particular in regions near the Galactic Center where there is significant kinematic gas information.

Masking 1FIG Sources in the GC

only a negligible effect on the gamma-ray excess.

Changing the point source catalog from the 3FGL to the 1FIG has

The Effect on the Galactic center Excess (masking |b| < 2°)

implying that analyses of small ROIs favors the excess.

Intriguingly, this persists even when the inner 2° are masked -

The Low Energy Spectrum

The Galactic Center models contain only a small preference for the convective winds, and the spectrum and intensity of the Galactic center excess component remains resilient.

Analysis Far from the GC

[GeV/(cm²s sr)

Analysis regions far from the GC also show an excess – not much star formation occurs a few degrees above the Galactic plane.

Calore et al. (2014, 1409.0042)

Comparison to Cygnus-X

Unprocessed map of 1.0 to 3.16 GeV gamma rays

Known sources removed