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GeV Observations with the Fermi-LAT

Launched: June 2008

Observes Gamma-Rays with
Energies 30 MeV - 1 TeV

Collaboration of five
countries and dozens of
institutions.

Operational Characteristics:
- Effective Area ~ 1 m?
- Field of View ~ 2 sr
- Energy Resolution ~ 10%
- Angular Resolution ~ Energy Dependent (~1° at 1 GeV)




GeV Observations with the Fermi-LAT

Galactic Center - Not
Galactic Plane is Bright Particularly Bright

Credit: NASA/DOE/Fermi LAT Collaboration



Most Diffuse Gamma-Ray Emission is Local




lefuse Gamma-Ray Emission

Supernovae source Cosmic-Ray Protons:
10" erg (~10% in relativistic protons)
(~2% in relativistic electrons)




lefuse Gamma-Ray Emission

Supernovae source Cosmic-Ray Protons:
10" erg (~10% in relativistic protons)
(~2% in relativistic electrons)
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lefuse Gamma-Ray Emission

Supernovae source Cosmic-Ray Protons:
10" erg (~10% in relativistic protons)
(~2% in relativistic electrons)

cosmic rays propagate
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Gas/ISRF




Diffuse Gamma-Ray Emission

Supernovae source Cosmic-Ray Protons:
10" erg (~10% in relativistic protons)
(~2% in relativistic electrons)

cosmic rays propagate
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Where Do Gamma-Rays Come From?

Point Sources (SNR, pulsars, etc.) . \

Particles and
| Atom of - gamma rays

interstellar gas created in the
7 collision

Hadronic Interactions (pp >n->yy) . ¢ & ’

Bremsstrahlung

e - . | P, Earth
o ?f;‘"y" - ';
Inverse Compton Scattering - .
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Photon Counts

750 — 950 MeV
Best Angular Resolution Cut
100 x 10° ROl



How Does This Analysis Work?

INNER GALAXY

- Mask galactic plane (e.g. |b| > 1°),
and consider 40° x 40° box

- Bright point sources masked at 2°
- Use likelihood analysis, allowing

the diffuse templates to float in
each energy bin

GALACTIC CENTER

- Box around the GC (10° x 10°)

- Include and model all point

sources

- Use likelihood analysis to

calculate the spectrum and
intensity of each source



Observational Results

After subtracting known sources - a bright excess remains
surrounding the Galactic Center.

Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays Known sources removed



Photon Counts

750 — 950 MeV
Best Angular Resolution Cut
100 x 10° ROl
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For the remainder of this talk, we employ a simple
analytical model, known as the “generalized NFW
Profile” which provides a reasonable fit to the observed
dark matter density distribution of dark matter halos.

In the standard NFW scenario, y=1

Navarro, Frenk, White (1996)
Springel et al. (2008, 0809.0898)
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Calore et al. (2015)

The excess has an unusual spectrum - highly peaked at an energy
of ~2 GeV.

The excess is resilient to changes in diffuse background modeling.
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Full Sky, |b|>1°
—~ — — — Southern Sky, |b|>1°

GALACTIC GENTER

1.1 1.2 1.3 p 71 1.1 1.2 1.3
Inner Profile Slope, ¥ Inner Profile Slope, v

Inner galaxy prefers density profile y =1.18

Galactic Center prefers y =1.17
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Hooper&Goodenough 2010 Calore+ 2014 /I G
GeV excess emission - Boyarsky+ 2010 Fermi coll. (preliminary)
at E =2 GeV ¢ Hooper&Slatyer 2013 ++++  contracted NFW v = 1.26

Gordon+ 2013 Fermi Bubbles (extrapolated)

Abazajian+ 2014 HI + H2 (at z < 0.2 kpc)
Daylan+ 2014
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The GeV excess is statistically significant from

0.1° — 10° from the Galactic Center.
Calore et al. (2014b)



The peak of the emission source lies within 0.05° of the GC.

Strongly suggests that the feature is dynamically centered on
the GCin 3D space. Daylan et al. (2014)



Observational Results
GC

The excess Is approximately spherically symmetric,
with an elongation parallel or perpendicular to the
Galactic center of less than 20%. Daylan et al. (2014)



Photon Counts

750 — 950 MeV
Best Angular Resolution Cut
100 x 10° ROl

bremsstrahlun



Key Results Have Been Validated

Goodenough & Hooper (2009) 0910.2998
Hooper & Goodenough (2011, PLB 697 412) 1010.2752
Hooper & TL (2011, PRD 84 12) 1110.0006
Abazajian & Kaplinghat (2012, PRD 86 8) 1207.6047
Hooper & Slatyer (2013, PDU 2 18) 1302.6589
Gordon & Macias (2013, PRD 8 8) 1306.5725
Macias & Gordon (2013, PRD 89 6) 1312.6671
Abazajian et al. (2014, PRD 90 2) 1402.4090
Daylan et al. (2014) 1402.6703
Calore et al. (2014) 1409.0042
Bartels et al. (2015) 1506.05104
Lee et al. (2015) 1506.05124
TL (2015) 1509.02928

Ajello et al. (2015) 1511.02938
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Where to Observe Dark Matter

Galaxy Clusters Galactic Center Dwarf Galaxies

Isotropic Background




The observed gamma-ray intensity from the inner 10 surrounding
the Galactic center, in an energy range hetween 1-3 GeV is:

1x10" erg cm? s

The prediction from a 100 GeV neutralino annihilating to bb at a
thermal cross section is:

2x1072 ergcm?s

There is no particular reason this needs to be true - the
astrophysical gamma-ray flux could easily be a million times
brighter.



Trying to Kill the Beast

Astrophysical mechanisms might also explain the excess!

1.) What if there is a new population of point sources near the
galactic center?

2.) What if our best models for diffuse astrophysical emission
are wrong?

3.) What if the galactic center has a complex/active past?

To some extent, all three of these are certainly true. So a better
question Is:
Can uncertainties in our astrophysical modeling plausibly
explain the Galactic Center observations?



Dark Matter
—§—§ - Msec. Pulsars

¢ Globular Clusters
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The peak of the MSP energy
spectrum matches the

peak of the GeV excess

E® AN/dE (GeV/em?®/s/sr)

MSPs are thought to be
overabundant in dense

star-forming regions like
the Galactic Center



In each pixel, you can
calculate the probability
that the data is explained
by Poisson fluctuations
around the best fit model.

Many pixels are found to
have large fluctuations - a
possible indication of point
source contributions.

Lee et al. (2015)



In each pixel, you can
calculate the probability
that the data is explained
by Poisson fluctuations
around the best fit model.
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Lee et al. (2015)
Can produce skymaps and flux distributions of non-Poissonian

emission, and see how this absorbs the point-to-point variations.
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When both a traditional NFW template and the non-Poissonian
NFW template are allowed to float arbitrarily, the non-
Poissonian template absorbs the gamma-ray excess.

Lee et al. (2015)



1000 Field »womeeeee
Observed Systems
Extrapolate dN/dlog(L) = const. !

Cholis et al. (2014)

100

» Can measure the fluxes
of known MSPs and
extrapolate to a
posited galactic center
population.
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* There would need to be 226 (+91/-67) MSPs with
luminosity > 1034 erg s in the circular region, and 61.9
(+60/-33.7) with luminosity > 103 erg s'-
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* A luminosity of 103> erg s' at the galactic center is
equivalent to a gamma-ray flux of 8.0 x 10 photons
cm?s'. These systems have not been observed in the

Galactic Center.
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* Even if the previous models are a little off, these
should be relatively bright sources.

* We can cross-correlate these hotspots with known
radio pulsars.



ATNF Pulsars | ATNF Pulsars GC
(-1, b) (-1, b) GC
(1, -b) ! (I, -b) GC
(-1, -b) (-1, -b) GC

x
=
(VN

—

7]
N o
L=y
I
c
et

=

v

-

o
9

1)

O

o
-

>
.4
n
.

S

c

o
2

O

©

—
.

" All Pulsars | 6 kpc < D._ <11 kpc

10 T 107 I T e T
Flux Above 1 GeV (cm ° s ') Flux Above 1 GeV (cm “ s ')

TL (2015)

 Additionally, these gamma-ray hotspots do not
correlate with the location of any known radio
pulsars.



How Do We Test the Pulsar Hypothesis?

* Future Gamma-Ray Observations by the Fermi-LAT are
unlikely to resolve this degeneracy

-d

* The observation of radio pulsars
coincident with gamma-ray
hotspots would be smoking-gun
evidence for a pulsar
interpretation




* Radio Observations with GBT
targeted at gamma-ray hotspots
would be expected to find ~5-10
MSPs with a 200 hr
commitment.

* Fortunately, SKA observations
are likely to conclusively find
MSPs in the GC, or rule out this
scenario entirely.

Calore et al. (2015)
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Cosmic-Ray Injection is
thought to trace the historic
(~10° yr) supernova rate.

OB Stars
Pulsars
SNR

Need tracers of current and
past supernovae rate:

+ Observed SNR

+ Pulsars

+ OB Stars

Scale-height 200 pc
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Interestingly the models used for these analyses have extremely
small injection rates near the GC (in several cases identically 0).



New Cosmic-Ray Injection Sources

Wide-Field VLA Radio Image

of the Galactic Center
(A=90cm)
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Observations indicate that a substantial
fraction of the total galactic star formation
rate is contained in the central molecular
zone:

* 3% (free-free emission, Longmore et al. 2013)
* 10% (young stellar objects, vusef-zadeh et al. 2009)

* 20% (Wolf-Rayet stars, Rosslowe & Crowther 2015)
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Wide-Field VLA Radio Image
of the Galactic Center
(A=90cm)
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Is the Galactic Center gamma-ray flux actually underluminous?



Add a new cosmic-ray injection component tracing the
molecular gas density.

Several molecular gas tracers are sensitive to gas
overdensities near the Galactic center.

Molecular Gas overdensities seed star
formation, a correlation given by the Kennicutt-Schmidt relation.
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** This is, by itself, an important result — and should be

incorporated in the next generation of gamma-ray diffuse models.
Carlson et al. (2015)



¢4 Mod A

Imposing the best fit global
model on the Inner Galaxy
decreases the intensity of
the excess.
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Additionally, the spectrum of the excess hecomes
significantly harder for high values of fu..

Carlison et al. (2015)



Marginalized

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5
Axis-Ratio (< 1 = disklike) Axis-Ratio (< 1 = disklike) Axis-Ratio (< 1 = disklike)

Interestingly, the intensity of the gamma-ray excess increases if it
Is flattened and stretched perpendicular to the Galactic plane.

In this case it becomes degenerate with the Fermi bubbles.

Carlson et al. (2016, in prep)
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However, when fy is allowed to float independently in the IG, the
best fit value is fu2 = 0.10, and the excess remains relatively bright.

Carlson et al. (2016, in prep)



In the GC, this degeneracy
disappears. The intensity,
spectrum, and morphology
of the excess is a resilient
feature.
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Emission could be concentrated in
the GC if it is produced by a recent
outburst.

Leptonic outbursts are most
reasonable because the target ISRF
is relatively spherically symmetric.

However, electrons cool too rapidly
to produce a similar gamma-ray
spectrum from 0.1° — 10° from the
GC.

Cholis et al. (2015)



However, two outbursts can
produce the emission, but only if:

1.) Each outburst has a very hard
injection spectrum E'-2 — E1>

2.) The outbursts are well timed (1
Myr + 100 kyr). The old outburst is
10x brighter than the new
outbhurst.

3.) A third outburst or bright
collection of point sources is
responsible for the inner ~1°.

Cholis et al. (2015)




Do not dismiss novel physics so
readily....
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see talk by Matt Buckley tomorrow



Where to Observe Dark Matter

Galaxy Clusters Galactic Center Dwarf Galaxies

_ see talk by Keith
n
Isotropic Background Bechtol Friday




Myriad Evidence Suggests Dark Matter exists, and
should have non-gravitational interactions:

p(B1A) P
P(A|B) = —P(B)

We shouldn’t think of dark matter searches as a
“needle in a haystack”. Our theoretical priors should

lead us to bet that particle dark matter can be feasibly
observed.



Over the last two years - the existence of a significant

gamma-ray excess (compared to current astrophysical
models) has been confirmed.

The gamma-ray excess has features compatible with a dark
matter sighal — a dark matter motivated NFW profile remains
the best fitting template to the gamma-ray data.

Several well motivated astrophysical models have been
produced, and new techniques are being developed to
differentiate between these models.

New multi wavelength models and studies are needed.



EXTRA SLIDES
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The relatively poor angular resolution of the Fermi-LAT
smears these signals into each other.
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DEGENERACY WITH MILLI-SECOND

PULSARS IN SPATIAL PROFILE
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WIMP models are well motivated.

For standard WIMP scenarios, the majority of the annihilation
energy is deposited at gamma-ray energies.



<ov> to observe |1 photon
Thermal Cross-Section

If we were in a background free experiment, or could separate dark
matter gamma-rays from other signals, then we would set limits far
below the thermal annihilation cross-section.

Alternatively, if dark matter annihilates at the thermal cross-
section, it produces many gamma-rays observed by the Fermi-LAT.



