Strong Evidence for Dark Matter Annihilation

in the Galactic Center and Inner Galaxy
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Dark Matter Indirect Detection

Particle Physics

Astrophysics

Diemand et al. 2008

Instrumental Response

Slide Concept Courtesy of Gabrijela Zaharijas



Why Do We Search for Dark Matter in Gamma-Rays?
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Why Do We Search for Dark Matter in Gamma-Rays?

Back of the Envelope Calculation

Total Gamma-Ray Flux from 1-3 GeV within 1° of the GCis ~1 x 10"%erg cm s

The flux expected from a vanilla dark matter model (100 GeV -> bb with an NFW

2

profile) is ~2 x 10" erg cm2 5™

There's no reason this needs to be true -- the total gamma-ray emission from the
Galactic center happens to fall within an order of magnitude of the most naive

Contrast this to 5 GHz radio observations, where the astrophysical diffuse background
is approximately ~4 x 109 erg cm2 57" while the dark matter contribution from the
same thermal relic is more than two orders of magnitude smaller than that.



Why Do We Search for Dark Matter in Gamma-Rays?

Diemand, Kuhlen & Madau (2011)

140

® The primary gamma-ray signal from dark matter annihilations is produced
promptly - so the gamma-ray flux is calculable if we know the dark matter
density



Why Do We Search for Dark Matter in Gamma-Rays?

® At low energy, propagation can carry the particles which create the
observed signal far from the annihilation event, before they produce
anything that is seen at the Earth



Why Do We Search for Dark Matter in Gamma-Rays?

Astrophysics

:
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Diemand et al. 2008

: JInstrumental Response




Fermi Telescope (2008-Present)

Fermi-LAT is a space based gamma-

ray detector with an effective energy
range of 20 MeV-300 GeV
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® |n analyses of the Galactic Center, we will
constrict ourselves to Front converting



The Galactic Center is a Good Dark Matter Target

® The "J-Factor” of a region allows us to compare the
astrophysical environments for dark matter detection
independent of particle physics model

o, ocJ—— dQ (D)dl(v)
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Ackermann et al. 2012 Dwal‘fs
Name 1 b d log,o(J) o ref.

deg. deg. kpc log,,[GeVZem ™’
Bootes I 358.08 69.62 60 17.7 0.34 [15] ® The J faCtOr Of the

Carina 260.11 —22.22 101  18.0 0.13 [16] ga|actic center iIs
Coma Berenices 241.9 83.6 44  19.0 0.37 [17

Draco 86.37 34.72 80 188  0.13 [16] apprOXImately:
Fornax 237.1 —65.7 138 17.7  0.23 [16

Sculptor ~ 287.15 —83.16 80 184  0.13 [16] |°910(J) = 21.02
Segue 1 220.48 50.42 23 196  0.53 [18
Sextans 243.4 422 86 17.8 0.23 [16] for a region within 100 pc of the

Ursa Major II 152.46 37.44 32 19.6 0.40 [17 Galactic center and an NFW proﬂ|e
Ursa Minor  104.95 44.80 66  18.5 0.18 [16




Fermi-LAT Sensitivity to Dark Matter
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® |f all dark matter photons came nicely tagged - dark
matter indirect detection would be easy



Angular Scales of the Galactic Center
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The Galactic Center “Zoo”

O-star/Pulsar density peaks at 0.5 pc,

and falls sharply for smaller radii
(Buchholz et al. 2009)
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Accretion disk -
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\on-thermal Radio Filaments - Bright,

polarized synchrotron sources
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Angular Scales of the Galactic Center

The “Game” of dark matter
detection at the galactic
center Is accurate
astrophysical modeling



Subtracting the Astrophysical Background: Fermi
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Dark Matter Limits in the Simplest Way Possible
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Understanding the GC Point Source: Fermi
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Extended Source Model Baseline Model Residuals Observed Counts

Extended Source Counts

Full Model Residuals
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Independent Confirmation

Abazajian & Kaplinghat (2012)
confirmed the existence of the source,

finding strong evidence for a dark

matter profile slope of approximately

1.2, and mass of approximately 30 GeV

Spatial Model Spectrum TSz —InL Aln L
Baseline — - 140070.2 -
Density I' = 0.7 |LogPar  1725.5 139755.5 314.7
Density? v = 0.9 |LogPar  1212.8 139740.0 330.2
Density? v = 1.0 |LogPar  1441.8 139673.3 396.9
Density? v = 1.1 |LogPar  2060.5 139651.8 418.3
Density? v = 1.2 |LogPar  4044.9 139650.9 419.2
Density® v = 1.3 |LogPar  7614.2 139686.8 383.4
Density? Einasto|LogPar  1301.3 139695.7 374.4
Density” v = 1.2 |PLCut  3452.5 139663.2 407.0
channel, m,, TS~ —InL AlnLC

bb, 10 GeV 2385.7 139913.6 156.5

bb, 30 GeV 3460.3 139658.3 411.8

bb, 100 GeV 1303.1 139881.1 189.0

bb, 300 GeV 229.4 140056.6 13.5

bb, 1 TeV 25.5 140108.2 -38.0

bb, 2.5 TeV 7.6 140114.2 —44.0
777,10 GeV | 1628.7 139787.7 282.5

7577, 30 GeV 232.7 140055.9 14.2
777, 100 GeV 410 1401134 —~43.3




Best Fit:
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Independent Confirmation

® Gordon & Macias (2013) also confirmed
the residual. They placed stronger limits
on the dark matter density profile, while
confirming the best spectral fits.
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Independent Confirmation
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Independent Confirmation
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We've Found an Excess!




Interpretations of the Excess

® Two convincing interpretations of
the data remain:

® Dark Matter annihilation following
a slightly adiabatically contracted
inner profile

® A large population of dim MSPs
centrally concentrated around the
central black hole
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What is it?
® Three Camps:

Slide concept courtesy of Dan Hooper



Strong new evidence for a Dark Matter Interpretation

® For the rest of the talk, | will show new data indicating that
the "Dark Matter Proponent” view is not crazy.

® Specifically, | hope to convince you:




An Extended Region of Interest

® Hooper & Slatyer (2013)
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examined the region inside of
the Fermi bubbles, and founc
evidence for a similar spectra
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An Extended Region of Interest

E® dN/dE (GeV/cm?®/s/sr)

This detection also helps to address
the problem of pulsar contamination. It
is difficult to explain the intensity and
spectrum of the excess with pulsars, in
light of Fermi constraints on observed
pulsars
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An Improved Analysis Technique

Intensity (normalized)
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® Not all photons recorded by the Fermi-LAT instrument have an equivalent

accuracy in their reconstructed direction

® Fortunately, there is a marker in the analysis pipeline, called CTBCORE, which

estimates how well the Fermi-LAT has reconstructed the true arrival direction

® \We utilize the 50% of photons with the best CTBCORE values, and

reconstruct the Instrument Response Functions against observations of bright
point sources (Portillo & Finkbeiner, 2014, to be submitted)



We've Found an Excess!




Modeling the Galactic Center and Inner Galaxy

® For all models we employ:
® -~5.25 years of data
® CTBCORE Q2 cuts on UltraClean front class photons

® Normal cuts on the instrumental performance to eliminate target
observation mode photons, etc.

Daylan, Finkbeiner, Hooper, Linden, Portillo, Rodd, Slatyer (2013, to be submitted)



Modeling the Inner Galaxy Excess
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® [n order to model the dark matter excess at the inner galaxy, we mask the
inner 1°, 2°, and 5° along the galactic plane, and then use models for the
diffuse emission, the emission from the Fermi bubbles templates, and the
spherically symmetric dark matter emission profile

® Fermi 2FGL point sources are masked at 2°, and are not part of the fit

® \We employ all photons above 10 GeV, since the PSF of the instrument is very
good at these energies



Modeling the Inner Galaxy Excess

® The relative contribution of each
component is allowed to vary in
30 different energy parameters,
in order to provide the best fit
to the data

® This produces an output
spectrum and morphology for
each template
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The Morphology of the Inner Galaxy Excess

® The emission stemming from
this dark matter template
obtains this excess
morphology

® |tis peaked around the
position of the galactic
center, and appears to be
spherically symmetric
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The Spectrum of the Inner Galaxy Excess

® The spectrum of this excess is
extremely well fit by the
annihilation of a dark mater
particle with mass 35.5 GeV
annihilating to bb.

® Note that the spectrum of the
components were allowed to vary
freely - this is not in any way
forced into the model by the
fitting parameters
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The Spectrum of the Inner Galaxy Excess

® The use of CTBCORE has greatly
increased the accuracy of our
models for the spectrum of the
excess. They now appear to be
almost independent of the choice
of latitude cuts in the data

What this plot used

to look like before

CTBCORE cuts
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The Morphology of the Inner Galaxy Excess

® The morphology of the inner
galaxy excess is fit by an NFW
profile, which prefers a slope of
approximately y=1.3

® This is consistent for both the
full sky, as well as observations
of just the southern sky (which
Is cleaner)
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Modeling the Galactic Center Excess

® Unlike the inner galaxy, we do not have the option of masking point sources
(we would have no ROI left), so we must model them

® \We include models for all point sources found in the 2FGL catalog. Bright point
sources are allowed to vary in both normalization and spectrum from the best
fit 2FGL values. Dim point sources are allowed to vary only in normalization

® The Fermi tool gtlike employs the MINUIT fitting algorithm in order to
determine the best fitting spectrum and flux of each source

® \We generate a “model independent” spectrum by using the following
algorithm:

® Find the flux of the dark matter component by seeding the fit with a given spectrum (sometimes
dark matter, sometimes a simple broken-power law)

® Find the best fit to the data, then allow the dark matter component to float independently in
each energy bin

® Interpolate that fit to a continuous spectrum, and reseed the fit to the data

® Repeat until any input spectrum converges to the same output



The Spectrum of the Galactic Center Excess
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® The spectrum of the GC is nearly
identical to the spectrum of the
inner galaxy excess.
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The Morphology of the Galactic Center Excess

® The galactic center excess prefers
a slightly flatter slope,
approximately y=1.15-1.2. The
degeneracy with the point
sources at the galactic center >
allow the profile to become
significantly flatter with only a

small change in chi-squared

_lo’ A A A A l A A A A l A A A A l A A A A.
1.0 1.1 1.2 1.3

Inner Profile Slope, ¥

® The difference between the
slopes in the inner 5° and in the
broader inner galaxy range are
perfectly consistent with models
of dark matter profiles in the
presence of baryons



The Morphology of the Galactic Center Excess

Gottloeber et al. (2010)
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We've Found an Excess!




Ellipticity of the Inner Galaxy Excess

® The inner galaxy excess is strongly
spherically symmetric.

® This contrasts strongly with the
templates for most astrophysical
emission sources (such as pulsars,
which favor axis ratios of
approximately 5).
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Ellipticity of the Galactic Center Excess

Dark Matter Change IN LG(Likelihood)
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® The excess also appears to be

approximately spherically

symmetric. Adding an axis ratio
(a?) decreases the best fitting 1.2
log likelihood.
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North/South Asymmetry of the Galactic Center Excess

® \\e find no evidence for a North/
South asymmetry in the galactic
center excess.

® \We also find no evidence for any
change in the dark matter profile
as a function of the distance away
from the galactic center

OLD PLOTS! - Uses a 30 GeV ->
bbar seed, does not include central
point sources or 20cm map
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Some Particle Physics Interpretations
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® This excess is well fit by a variety of well-motivated dark matter models.

® Coupling to mass produces a particularly good fit, and allows the dark
matter mass to be approximately half the Z-boson mass.




Some Particle Physics Interpretations
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® The cross-sections are consistent with that of a thermally produced dark
matter relic



A Hint of An Excess in Dwarf Spheroidals?
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® The most recent observations 102

of dwarfs by the Fermi-LAT
collaboration also find that
their limits on the dark matter
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Conclusions

® \We have found a consistent, spherically symmetric signal in both the galactic center and
the inner galaxy, extending to almost 200 away from the GC

® The spectrum of this excess is consistent in all regions
® This excess is highly spherically symmetric in all regions

® This excess falls as a approximately p29 - p-2¢ through all regions

These are all exactly the properties you expect from a dark matter signal

These are not the properties you expect from any astrophysical signal



Conclusions

® The prior against a dark matter interpretation is large (those finding dark matter are
currently batting .000)

® However, this excess deserves to be taken seriously as possible evidence for the
annihilation of a dark matter particle



