Compton Lectures Fall 2014 Shining light on the Dark Side of the Universe

What is Dark Energy?

Elise Jennings

Kavli Institute for Cosmological Physics & Enrico Fermi Institute University of Chicago

Epochs of the Universe

\prec Radius of the Visible Universe 🔶 🔉

Dark Energy Era

5 billion years ago

Accelerated expansion. LSS in superclusters.

Epochs of the Universe

🔶 Radius of the Visible Universe 🔶 🔉

End?

The

Milky way & Andromeda collide: few Gyr

Cosmic blackout: 100 Gyr

Stellar extinction: 1000 Gyr

Story of the expanding Universe

1915 Einstein's theory General Relativity predicted a dynamic expanding Universe **1923 Hubble's observations**

The farther away a galaxy is, the faster it moves away from us.

1923 Hubble's observations

The farther away a galaxy is, the faster it moves away from us.

Mass/energy in the Universe

Some constants

Structure of space-time

General Relativity describes the connection between the expansion of the Universe & the energy in the Universe

Early 1990's Some observations didn't make sense in the story of the expanding Universe...

Cosmic age problem

Predicted age of the Universe with matter only

$8.2\,{ m Gyr} < t_0 < 10.2\,{ m Gyr}$

Measured age of the oldest star clusters

 $15.2\pm3.5\,\mathrm{Gyr}$

 $Cowan\,et\,al\,1997$

3 Weeks

Before

(as seen from telescopes on Earth)

(as seen from Hubble Space

Telescope)

Supernova Discovery

Difference

Adam Riess, Saul Perlmutter and Brian Schmidt

Supernova 1998ba Supernova Cosmology Project (Perlmutter, *et al.*, 1998)

> Supernovae were dimmer then expected from the predictions of General relativity + dark matter only

M82 The Cigar Galaxy 2013

M82 The Cigar Galaxy 22nd Jan 2014

Red giant

a

White dwarf

b

.

White dwarf

Subgiant or main-sequence star

These exploding stars are "Standard candles"

Photons of light that reach Earth

Astier et al 2006

Theory of General Relativity & Dark matter alone cannot explain these observations!

How do we explain these observations?

General Relativity + (some extra component) ??

Quantum Field Theory 1950s

A quantum vacuum has exactly the properties of Dark Energy we observe

The vacuum is never empty

It is full of virtual particles pairs!

The Casimir Effect 1948 virtual photons between pair of plates generate a force

QCD Simulation: Derek leinweber

Great!

Dark energy = Cosmological Constant & our theory is complete?

Observed value

$\rho_{\Lambda} \approx 10^{-30} \text{ g cm}^{-3}$

 $\rho_{\text{GUT}} \approx 10^{74} \text{ g cm}^{-3}$

Predicted value from theory

Difference of ~ 10^{120} is a disaster for this theory

1 with one hundred & twenty "zeros" after it !

On galactic scales gravity is the most important force maybe a new theory can explain the accelerating expansion?

It's not so crazy to think about changing our theory of gravity!

Lessons from history

Deviations from Newtonian gravity in the precession of Mercury

Le Verrier: new planet Vulcan?

Einstein: General Relativity

The annoying success of Newton and Einstein....

Some Solar system tests of General Relativity

- Perihelion shift of Mercury
 0.3%
- Shapiro Time delay
 Cassini
 Spacecraft:
 0.002%
 - Lunar ranging experiments

Testing Einstein in space

• Binary Pulsars 0.2%

Gravitational waves ?

It's tough to modify gravity and still match observations on all scales

$$\begin{split} \delta S[g] &= \int \frac{1}{2\kappa} \left(\delta f(R) \sqrt{-g} + f(R) \delta \sqrt{-g} \right) \, \mathrm{d}^4 x \\ &= \int \frac{1}{2\kappa} \left(F(R) \delta R \sqrt{-g} - \frac{1}{2} \sqrt{-g} g_{\mu\nu} \delta g^{\mu\nu} f(R) \right) \, \mathrm{d}^4 x \\ &= \int \frac{1}{2\kappa} \sqrt{-g} \left(F(R) (R_{\mu\nu} \delta g^{\mu\nu} + g_{\mu\nu} \Box \delta g^{\mu\nu} - \nabla_\mu \nabla_\nu \delta g^{\mu\nu}) - \frac{1}{2} g_{\mu\nu} \delta g^{\mu\nu} f(R) \right) \, \mathrm{d}^4 x \\ &\delta S[g] = \int \frac{1}{2\kappa} \sqrt{-g} \delta g^{\mu\nu} \left(F(R) R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} f(R) + [g_{\mu\nu} \Box - \nabla_\mu \nabla_\nu] F(R) \right) \, \mathrm{d}^4 x. \end{split}$$

$$G_{\text{eff}} = \frac{1}{8\pi F} \frac{1 + 4\frac{k^2}{a^2 R}m}{1 + 3\frac{k^2}{a^2 R}m},$$

We know that General Relativity is not the full story - singularities!

Destiny of the Universe

Observed accelerating expansion implies a component with a negative pressure.

Ultimate fate depends on the properties of Dark Energy. $w = \frac{P}{\rho}$

Destiny of the Universe

Acceleration continues

w = -1

Big Bang Today

Emptiness -Cosmic Black out 100 billion years

Stars burn out 1000 billion years

All evidence of Big Bang is lost

Destiny of the Universe

Acceleration continues

w = -1

Acceleration amplified

۲

Big Bang Today

Cosmic Black out

Big Rip

Dark Energy tears
apart LSS

50 billion years

Destiny of the Universe

Acceleration continues

w = -1

Acceleration amplified

Big Bang Today

Acceleration

becomes deceleration

۲

Recollapse Big Crunch 30 billion years

Cosmic Black out

Big Rip

What is Dark Energy??

The

cliffhanger

VIRTUAL PARTICLES, by Frank Wilczek

Beware of thinking nothing's there. Remove all you can, despite your care Behind remains a restless seething Of mindless clones beyond conceiving.

They come in a wink, they dance about, Whatever they touch is seized by doubt: What am I doing here? What should I weigh? Such thoughts often lead to rapid decay.

Fear not! The terminology's misleading; Decay is virtual particle breeding Their ferment, though mindless, does serve noble ends: Those clones, when exchanged, make a bond between friends.

> To be or not? The choice seems clear enough, But Hamlet vacillated. So does this stuff.